Suppr超能文献

肺腺癌中与临床结局及免疫治疗优势相关的肿瘤内异质性特征

Intratumor heterogeneity related signature for clinical outcome and immunotherapy advantages in lung adenocarcinoma.

作者信息

Zuo Yanhua, Lin Li, Sun Libo

机构信息

Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China.

出版信息

Discov Oncol. 2025 Mar 29;16(1):425. doi: 10.1007/s12672-025-02173-3.

Abstract

BACKGROUND

Immunotherapy benefits shows discrepancy in different lung adenocarcinoma (LUAD) patients because of the intratumor heterogeneity (ITH). ITH favors tumor evolution and correlated with drug resistance. The genes mediating ITH in LUAD and their role in predicting prognosis and therapy benefits is unclear.

METHODS

An ITH-related signature (IRS) was built by ten methods-based integrative machine learning programs using TCGA, GSE68571, GSE42127, GSE30129, GSE50081, GSE72094, GSE37745, GSE68467, and GSE31210 dataset. To assess the relationship between IRS and the tumor immune microenvironment, numerous prediction scores were employed.

RESULTS

The optimal predictive signature for LUAD cases was the IRS developed using Lasso + stepCox(both) method, which had the highest average C-index of 0.80. It performed consistently and effectively in predicting the clinical outcomes of LUAD patients. Additionally, compared to the clinical stage and numerous other existing prediction models, a higher C-index was demonstrated in IRS. LUAD patients with low IRS score had a higher level of immuno-activated cells, higher TMB score, lower ITH score, higher PD1&CTLA4 immunophenoscore, and tumor escape score in LUAD. The gene set score for angiogenesis, coagulation, hypoxia, and NOTCH signaling were increased in LUAD with high IRS score.

CONCLUSION

Overall, the study developed a unique IRS for LUAD that may serve as a predictor of the clinical outcome and immunotherapy advantages for individuals with LAUD.

摘要

背景

由于肿瘤内异质性(ITH),免疫治疗在不同肺腺癌(LUAD)患者中的获益存在差异。ITH有利于肿瘤进展并与耐药性相关。介导LUAD中ITH的基因及其在预测预后和治疗获益方面的作用尚不清楚。

方法

使用TCGA、GSE68571、GSE42127、GSE30129、GSE50081、GSE72094、GSE37745、GSE68467和GSE31210数据集,通过基于十种方法的综合机器学习程序构建ITH相关特征(IRS)。为评估IRS与肿瘤免疫微环境之间的关系,采用了多种预测评分。

结果

LUAD病例的最佳预测特征是使用Lasso + stepCox(两者)方法开发的IRS,其平均C指数最高,为0.80。它在预测LUAD患者的临床结局方面表现一致且有效。此外,与临床分期和许多其他现有预测模型相比,IRS显示出更高的C指数。IRS评分低的LUAD患者具有更高水平的免疫激活细胞、更高的肿瘤突变负荷(TMB)评分、更低的ITH评分、更高的PD1&CTLA4免疫表型评分以及LUAD中的肿瘤逃逸评分。高IRS评分的LUAD中血管生成、凝血、缺氧和NOTCH信号通路的基因集评分增加。

结论

总体而言,该研究为LUAD开发了一种独特的IRS,可作为LAUD个体临床结局和免疫治疗优势的预测指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/832a/11954763/a2ee2e2086a5/12672_2025_2173_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验