Suppr超能文献

通过多机器学习计算框架识别肝内胆管癌全凋亡特征和预后模型的多组学方法

Multi-omics approaches for identifying the PANoptosis signature and prognostic model via a multimachine-learning computational framework for intrahepatic cholangiocarcinoma.

作者信息

Yu Yanxi, You Yan, Duan Yuxin, Kang Meiqing, Zhou Baoyong, Yang Jian, Yin Kunli, Ye Wentao, Xu Ranning, Wang Hao, Zhang Ziqi, Huang Zuotian, Liu Yanyao, Wu Zhongjun, Tao Rui, Liao Rui

机构信息

Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.

Department of Pathology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.

出版信息

Hepatology. 2025 Apr 15. doi: 10.1097/HEP.0000000000001352.

Abstract

BACKGROUND AND AIMS

The aims of the present study were to characterize the PANoptosis signature in intrahepatic cholangiocarcinoma (ICC) patients, construct a novel model to guide clinical diagnosis and treatment, and further explore the associated molecular mechanisms of drug resistance.

APPROACH AND RESULTS

In total, 85 PANoptosis-related genes that possess both PANoptosis and multi-omics features were, respectively, screened from transcriptomic data from the OEP001105 public cohort and from transcriptomic and proteomic sequencing data from The First Affiliated Hospital of Chongqing Medical University. A novel framework integrating Cox regression analysis and 5 machine learning algorithms was developed to identify the 5 hub genes (POSTN, SFN, MYOF, HOGA1, and PECR). The subsequently constructed PANoptosis risk score demonstrates outstanding performance in predicting prognosis and clinical translation across multicenter cohorts with multi-omics profiling. Bulk and single-cell transcriptome profiling were used to investigate the tumor microenvironment, emphasizing the crucial role of macrophages in the tumor microenvironment of ICCs. Moreover, a positive spatial correlation of cancer-associated fibroblasts-derived POSTN expression with tumor-associated macrophages infiltration and PD-L1/PD-L2 expression in ICC patients was observed, suggesting that overexpression of POSTN may lead to resistance to immune checkpoint blockade therapy in ICC patients.

CONCLUSIONS

The present study identified a precise prognostic and treatment strategy for ICC patients prone to PANoptosis, investigated the molecular mechanisms of PANoptosis in ICC cells, and highlighted the potential clinical relevance of the PANoptosis risk score in predicting prognosis and therapy response. These findings will help guide clinical treatment strategies for ICC.

摘要

背景与目的

本研究旨在表征肝内胆管癌(ICC)患者的全凋亡特征,构建一个指导临床诊断和治疗的新模型,并进一步探索耐药相关的分子机制。

方法与结果

分别从OEP001105公共队列的转录组数据以及重庆医科大学附属第一医院的转录组和蛋白质组测序数据中筛选出85个具有全凋亡和多组学特征的全凋亡相关基因。开发了一个整合Cox回归分析和5种机器学习算法的新框架,以识别5个核心基因(POSTN、SFN、MYOF、HOGA1和PECR)。随后构建的全凋亡风险评分在预测多组学分析的多中心队列的预后和临床转化方面表现出色。采用批量和单细胞转录组分析来研究肿瘤微环境,强调巨噬细胞在ICC肿瘤微环境中的关键作用。此外,在ICC患者中观察到癌相关成纤维细胞衍生的POSTN表达与肿瘤相关巨噬细胞浸润以及PD-L1/PD-L2表达呈正空间相关性,表明POSTN的过表达可能导致ICC患者对免疫检查点阻断治疗产生耐药性。

结论

本研究为易于发生全凋亡的ICC患者确定了精确的预后和治疗策略,研究了ICC细胞中全凋亡的分子机制,并强调了全凋亡风险评分在预测预后和治疗反应方面的潜在临床相关性。这些发现将有助于指导ICC的临床治疗策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验