Suppr超能文献

核碱基类似物4-硫尿嘧啶利用嘧啶补救途径来抑制生长。

The nucleobase analog 4-thiouracil hijacks the pyrimidine salvage pathway to inhibit growth.

作者信息

Munneke Matthew J, Freiberg Jeffrey A, Skaar Eric P

机构信息

Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.

Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA.

出版信息

Microbiol Spectr. 2025 Jul;13(7):e0064025. doi: 10.1128/spectrum.00640-25. Epub 2025 May 27.

Abstract

UNLABELLED

is a leading cause of bacterial-induced mortality due to infections that are increasingly resistant to antibiotics, highlighting the need for new therapeutic strategies to treat these drug-resistant infections. Targeting essential pathways that differ from the host, such as cell wall synthesis, has served as an effective approach for antimicrobial drug development. Nucleotides are essential building blocks for nucleic acids and the bacterial cell wall, and we hypothesized that the metabolic pathways required to obtain these molecules may represent promising antimicrobial targets. To investigate if pyrimidine metabolism could be leveraged to inhibit growth, we tested the antimicrobial activity of the uracil derivative, 4-thiouracil (4-TU). Growth of laboratory methicillin-susceptible and resistant strains, including a methicillin-resistant clinical isolate, is inhibited by 4-TU. Based on the structural similarity between 4-TU and uracil, we hypothesized that 4-TU hijacks the pyrimidine salvage pathway for incorporation into RNA. High-performance liquid chromatography (HPLC) analysis showed 4-thiouridine (sU) in RNA isolated from treated with 4-TU. Isolation of 4-TU-resistant suppressor strains revealed that mutations in uracil phosphoribosyltransferase (Upp), a component of the pyrimidine salvage pathway, confer resistance to 4-TU. HPLC analysis of RNA isolated from an mutant demonstrated a lack of sU, suggesting that is required for incorporation of 4-TU into RNA. Expression of thiouracil desulfurase in , or cotreatment with uracil and 4-TU, alleviates 4-TU toxicity. Collectively, these findings suggest that 4-TU commandeers the pyrimidine salvage pathway to inhibit growth.

IMPORTANCE

is associated with greater than one million global deaths annually and is capable of infecting every human tissue. The increasing emergence of antibiotic-resistant strains emphasizes the urgent need to develop new therapeutic strategies to treat infections. Nucleoside analogs that disrupt pyrimidine or purine nucleotide metabolism serve as a promising approach for treating drug-resistant infections, as these pathways differ between host and bacteria. Here, we demonstrate that the uracil derivative 4-thiouracil (4-TU) inhibits growth by hijacking the pyrimidine salvage pathway, leading to incorporation of 4-TU into RNA. We found that mutations in uracil phosphoribosyltransferase () confer resistance to 4-TU and prevent incorporation into RNA. Expression of a hioracil eulfurase () from is sufficient to detoxify 4-TU and diminish 4-TU levels in RNA. Taken together, these results suggest that 4-TU-mediated disruption of pyrimidine metabolism limits growth, which may serve as a promising therapeutic target.

摘要

未标记

由于感染对抗生素的耐药性日益增强,是导致细菌感染死亡的主要原因,这凸显了需要新的治疗策略来治疗这些耐药感染。靶向与宿主不同的必需途径,如细胞壁合成,已成为抗菌药物开发的有效方法。核苷酸是核酸和细菌细胞壁的必需组成部分,我们推测获取这些分子所需的代谢途径可能是有前景的抗菌靶点。为了研究嘧啶代谢是否可用于抑制生长,我们测试了尿嘧啶衍生物4-硫尿嘧啶(4-TU)的抗菌活性。4-TU可抑制实验室中对甲氧西林敏感和耐药的菌株的生长,包括一株耐甲氧西林的临床分离株。基于4-TU与尿嘧啶的结构相似性,我们推测4-TU劫持嘧啶补救途径以掺入RNA。高效液相色谱(HPLC)分析显示,用4-TU处理后的RNA中存在4-硫尿苷(sU)。分离出对4-TU耐药的抑制菌株表明,嘧啶补救途径的一个组成部分尿嘧啶磷酸核糖转移酶(Upp)中的突变赋予了对4-TU的抗性。对从一个Upp突变体分离的RNA进行HPLC分析表明缺乏sU,这表明Upp是4-TU掺入RNA所必需的。在细菌中表达硫尿嘧啶脱硫酶,或与尿嘧啶和4-TU共同处理,可减轻4-TU的毒性。总的来说,这些发现表明4-TU利用嘧啶补救途径来抑制细菌生长。

重要性

每年在全球导致超过一百万人死亡,并且能够感染人体的每个组织。抗生素耐药菌株的不断出现强调了迫切需要开发新的治疗策略来治疗感染。破坏嘧啶或嘌呤核苷酸代谢的核苷类似物是治疗耐药感染的一种有前景的方法,因为这些途径在宿主和细菌之间存在差异。在这里,我们证明尿嘧啶衍生物4-硫尿嘧啶(4-TU)通过劫持嘧啶补救途径来抑制细菌生长,导致4-TU掺入RNA。我们发现尿嘧啶磷酸核糖转移酶(Upp)中的突变赋予了对4-TU的抗性并阻止其掺入RNA。来自细菌的硫尿嘧啶脱硫酶(Bus)的表达足以使4-TU解毒并降低RNA中的4-TU水平。综上所述,这些结果表明4-TU介导的嘧啶代谢破坏限制了细菌生长,这可能是一个有前景的治疗靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a34/12210855/eb3b708049f6/spectrum.00640-25.f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验