Suppr超能文献

2019冠状病毒病对美国婴儿及新生儿死亡率影响的时间序列分析

Time series analysis of impact of COVID-19 on infant and neonatal mortality in the United States.

作者信息

Zhang Zhihong, Luo Jiebo

机构信息

School of Nursing, University of Rochester, Rochester, NY, USA.

Institute for Data Science, Columbia University, New York City, NY, USA.

出版信息

Pediatr Res. 2025 Jun 2. doi: 10.1038/s41390-025-04054-5.

Abstract

BACKGROUND

This study aims to conduct a time series analysis to assess the effect of COVID-19 on infant and neonatal mortality in its first three years.

METHODS

Linked infant birth and death certificate data from the United States between 2016 and 2022 were used. Long Short-Term Memory (LSTM) and Autoregressive Integrated Moving Average (ARIMA)/ARIMA with Exogenous Variables (ARIMAX) were employed to predict monthly infant and neonatal mortality trends in 2022 with and without incorporating COVID-19 as a feature. Interrupted Time Series Analysis was conducted to measure monthly rate changes before (pre-March 2020) and during the COVID-19 period (March 2020-December 2022).

RESULTS

Infant and neonatal deaths declined from 2016 to 2020/2021, with increases observed starting in May 2022. Incorporating COVID-19 as a variable into prediction models reduced the predictive performance of both LSTM and ARIMA/ARIMAX models. Compared to the pre-COVID-19 period, ITS showed no significant changes in monthly infant and neonatal death rates. However, significant increases were noted in low birth weight, low Apgar scores, and infrequent prenatal visits during 2021-2022.

CONCLUSION

COVID-19 altered the previously continuous decline in infant and neonatal deaths in 2022. Despite this late increase, the overall impact of COVID-19 on infant and neonatal mortality remains minimal.

IMPACT

Infant and neonatal deaths showed a steady decline from 2016 through 2020/2021. However, an increase in infant and neonatal deaths emerged in the later stages of the COVID-19 pandemic (2022). Rates of risk factors associated with infant and neonatal deaths, such as low birth weight and inadequate prenatal care, increased during the COVID-19 period. Understanding the shifts in infant and neonatal mortality and related risk factors during the COVID-19 pandemic provides valuable insights into its impact and enhances preparedness for future pandemics.

摘要

背景

本研究旨在进行时间序列分析,以评估新冠疫情头三年对婴儿和新生儿死亡率的影响。

方法

使用了2016年至2022年期间美国关联的婴儿出生和死亡证明数据。采用长短期记忆网络(LSTM)以及自回归积分滑动平均模型(ARIMA)/带外生变量的自回归积分滑动平均模型(ARIMAX),在纳入和不纳入新冠疫情作为特征的情况下,预测2022年每月的婴儿和新生儿死亡率趋势。进行了中断时间序列分析,以衡量2020年3月之前(新冠疫情前)和新冠疫情期间(2020年3月至2022年12月)每月的死亡率变化。

结果

2016年至2020/2021年期间,婴儿和新生儿死亡人数下降,2022年5月开始出现上升。将新冠疫情作为变量纳入预测模型降低了LSTM和ARIMA/ARIMAX模型的预测性能。与新冠疫情前时期相比,中断时间序列分析显示每月婴儿和新生儿死亡率没有显著变化。然而,2021年至2022年期间,低出生体重、低阿氏评分和产前检查不频繁的情况显著增加。

结论

新冠疫情改变了2022年婴儿和新生儿死亡人数此前持续下降的趋势。尽管后期有所增加,但新冠疫情对婴儿和新生儿死亡率的总体影响仍然很小。

影响

2016年至2020/2021年期间,婴儿和新生儿死亡人数呈稳步下降趋势。然而,在新冠疫情后期(2022年),婴儿和新生儿死亡人数出现增加。新冠疫情期间,与婴儿和新生儿死亡相关的风险因素发生率,如低出生体重和产前护理不足,有所上升。了解新冠疫情期间婴儿和新生儿死亡率的变化以及相关风险因素,有助于深入了解其影响,并增强对未来大流行的防范能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验