Suppr超能文献

新型苯并噻嗪酮衍生物的虚拟筛选以预测结核分枝杆菌激酶的潜在抑制剂:二维定量构效关系、分子对接、MM-PBSA动力学模拟及ADMET性质

Virtual Screening of Novel Benzothiozinone Derivatives to Predict Potential Inhibitors of Mycobacterium Tuberculosis Kinases 2D-QSAR, Molecular Docking, MM-PBSA Dynamics Simulations, and ADMET Properties.

作者信息

Guendouzi Abdelmadjid, Belkhiri Lotfi, Slimani Zakaria, Guendouzi Abdelkrim, Moroy Gautier

机构信息

Higher Normal School of Constantine ENS Assia Djebar Constantine, Ali Mendjeli, Constantine 25000, Algeria.

Pharmaceutical Sciences Research Center CRSP, ZAM Ali Mendjeli, Constantine 25000, Algeria.

出版信息

Int J Mol Sci. 2025 May 27;26(11):5129. doi: 10.3390/ijms26115129.

Abstract

Mycobacterium tuberculosis, the infectious agent behind tuberculosis (TB), underscores the significance of targeting enzymes such as arabinosyltransferases in drug development efforts. Benzothiozinone derivatives, which have been assessed for their effectiveness against TB, present a promising avenue for treatment. Utilizing a high virtual screening quantitative structure-activity relationship (QSAR-VS), a set of forty Benzothiozinone (C1-C40) compounds were investigated to build a robust model with satisfactory performance metrics ( = 0.82, = 0.78, = 10, = 0.70). This model enabled the creation of databases containing new derivatives for screening drug-like properties and predicting MIC activity in TB treatment. The best-scoring compounds were screened by molecular docking with Mycobacterium tuberculosis kinases A and B (PDB code: 6B2P) and validated by molecular dynamics simulations to elucidate the most stable drug-protein interactions. Additionally, the MM-PBSA analysis shows that the strongest binding occurs in complexes X3, X4, and X6 with Δ values of -8.2, -15.3, and -12.0 kcal/mol, respectively. Our in silico study aims to prospect these new anti-tubercular drugs and their potential development through perspective in vitro and in vivo assays.

摘要

结核分枝杆菌是结核病(TB)背后的感染因子,这凸显了在药物研发中靶向诸如阿拉伯糖基转移酶等酶的重要性。已对苯并噻嗪酮衍生物抗结核的有效性进行了评估,它们为治疗提供了一条有前景的途径。利用高虚拟筛选定量构效关系(QSAR-VS),研究了一组40种苯并噻嗪酮(C1 - C40)化合物,以构建一个具有令人满意性能指标( = 0.82, = 0.78, = 10, = 0.70)的稳健模型。该模型能够创建包含新衍生物的数据库,用于筛选类药物特性并预测结核病治疗中的最低抑菌浓度(MIC)活性。通过与结核分枝杆菌激酶A和B(PDB代码:6B2P)进行分子对接筛选出得分最高的化合物,并通过分子动力学模拟进行验证,以阐明最稳定的药物 - 蛋白质相互作用。此外,MM-PBSA分析表明,在复合物X3、X4和X6中发生最强结合,其Δ值分别为-8.2、-15.3和-12.0千卡/摩尔。我们的计算机模拟研究旨在通过体外和体内试验展望这些新型抗结核药物及其潜在的开发前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验