Suppr超能文献

借助人工智能实现老龄化:科技如何提升老年人的健康水平与独立性。

Aging With Artificial Intelligence: How Technology Enhances Older Adults' Health and Independence.

作者信息

McDaniel Laura, Essien Ime, Lefcourt Samuel, Zelleke Ephrata, Sinha Arushi, Chellappa Rama, Abadir Peter M

机构信息

Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland, USA.

Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA.

出版信息

J Gerontol A Biol Sci Med Sci. 2025 Jun 10;80(7). doi: 10.1093/gerona/glaf086.

Abstract

BACKGROUND

As the global population ages healthcare challenges are escalating. Frailty, a clinical syndrome characterized by decreased reserve and resilience to stressors, is critically linked to adverse health outcomes in older adults. However, artificial intelligence (AI)-driven technologies offer promising solutions for revolutionizing older individuals care and enhancing senior health and independence.

OBJECTIVE

This paper explores how AI-driven technologies, including wearables, nonwearable devices, and wireless systems, are transforming senior care. These innovations enable continuous health monitoring, fall detection, medication adherence, and cognitive assistance.

RECENT FINDINGS

Recent advancements in sensor technology, machine learning/AI algorithms, and user interface design have made these technologies more effective and accessible to older adults. Key benefits include early health issue detection, improved medication adherence, reduced hospitalizations, extended independent living, and improved quality of life. Privacy concerns, ease of use, and technology adoption are challenges that must be addressed.

CONCLUSION

Thoughtfully designed AI wearables and supportive policies and infrastructure can significantly enhance seniors' quality of life while reducing caregiver burden and healthcare costs. As technology advances, AI-driven solutions across wearable, nonwearable, and wireless devices are set to become indispensable in global strategies for healthy aging.

摘要

背景

随着全球人口老龄化,医疗保健挑战不断升级。衰弱是一种以应对压力源的储备和恢复力下降为特征的临床综合征,与老年人的不良健康结局密切相关。然而,人工智能(AI)驱动的技术为变革老年人护理以及提高老年人的健康水平和独立性提供了有前景的解决方案。

目的

本文探讨包括可穿戴设备、非可穿戴设备和无线系统在内的人工智能驱动技术如何正在改变老年护理。这些创新实现了持续健康监测、跌倒检测、药物依从性监测和认知辅助。

最新发现

传感器技术、机器学习/人工智能算法和用户界面设计方面的最新进展使这些技术对老年人更有效且更易于使用。主要益处包括早期健康问题检测、提高药物依从性、减少住院次数、延长独立生活时间以及改善生活质量。隐私问题、易用性和技术采用是必须解决的挑战。

结论

精心设计的人工智能可穿戴设备以及支持性政策和基础设施可以显著提高老年人的生活质量,同时减轻护理人员负担并降低医疗成本。随着技术进步,跨可穿戴、非可穿戴和无线设备的人工智能驱动解决方案将在全球健康老龄化战略中变得不可或缺。

相似文献

1
Aging With Artificial Intelligence: How Technology Enhances Older Adults' Health and Independence.
J Gerontol A Biol Sci Med Sci. 2025 Jun 10;80(7). doi: 10.1093/gerona/glaf086.
2
Global consensus on optimal exercise recommendations for enhancing healthy longevity in older adults (ICFSR).
J Nutr Health Aging. 2025 Jan;29(1):100401. doi: 10.1016/j.jnha.2024.100401. Epub 2025 Jan 1.
5
When "Aging" meets "Intelligence": smart health cognition and intentions of older adults in rural Western China.
Front Psychiatry. 2025 Jun 19;15:1493376. doi: 10.3389/fpsyt.2024.1493376. eCollection 2024.
6
Integrating artificial intelligence in healthcare: applications, challenges, and future directions.
Future Sci OA. 2025 Dec;11(1):2527505. doi: 10.1080/20565623.2025.2527505. Epub 2025 Jul 4.
9
Experiences of community-dwelling older adults with the use of telecare in home care services: a qualitative systematic review.
JBI Database System Rev Implement Rep. 2017 Dec;15(12):2913-2980. doi: 10.11124/JBISRIR-2017-003345.

本文引用的文献

1
Anomaly-based threat detection in smart health using machine learning.
BMC Med Inform Decis Mak. 2024 Nov 19;24(1):347. doi: 10.1186/s12911-024-02760-4.
2
Integrating Artificial Intelligence and Wearable IoT System in Long-Term Care Environments.
Sensors (Basel). 2023 Jun 26;23(13):5913. doi: 10.3390/s23135913.
3
The US eldercare workforce is falling further behind.
Nat Aging. 2021 Apr;1(4):327-329. doi: 10.1038/s43587-021-00057-z.
7
Profiling hearing aid users through big data explainable artificial intelligence techniques.
Front Neurol. 2022 Aug 26;13:933940. doi: 10.3389/fneur.2022.933940. eCollection 2022.
8
Healthcare applications of single camera markerless motion capture: a scoping review.
PeerJ. 2022 May 26;10:e13517. doi: 10.7717/peerj.13517. eCollection 2022.
9
Machine Learning for Healthcare Wearable Devices: The Big Picture.
J Healthc Eng. 2022 Apr 18;2022:4653923. doi: 10.1155/2022/4653923. eCollection 2022.
10
Remote Healthcare for Elderly People Using Wearables: A Review.
Biosensors (Basel). 2022 Jan 27;12(2):73. doi: 10.3390/bios12020073.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验