Suppr超能文献

蛋白质-核酸复合物中的通信通路分析

Communication Pathway Analysis within Protein-Nucleic Acid Complexes.

作者信息

Bheemireddy Sneha, González-Alemán Roy, Bignon Emmanuelle, Karami Yasaman

机构信息

CNRS, Inria, LORIA, Université de Lorraine, F-54000 Nancy, France.

CNRS, UMR 7019, LPCT, Université de Lorraine, F-54000 Nancy, France.

出版信息

J Chem Theory Comput. 2025 Jun 24. doi: 10.1021/acs.jctc.5c00445.

Abstract

Inter-residue communication forms a vast and intricate network that underpins essential biological processes such as catalysis, gene expression, and cell signaling. Allostery, a crucial phenomenon where distant regions of a macromolecule are energetically coupled to elicit functional responses, operates through these intricate communication networks within macromolecular complexes. Despite the pivotal role of nucleic acids in these networks, their contributions to allostery have largely been overlooked. To address this gap, we developed ComPASS, a large-scale computational method designed to study communication networks in protein-protein and protein-nucleic acid complexes. Recognizing the significance of dynamics in the communication of macromolecules, our approach leverages molecular dynamics (MD) simulation data to extract inter-residue key properties, including dynamical correlations, interactions, and distances. These properties are integrated to construct a weighted communication network that comprehensively represents the dependencies among amino acids and nucleotides. Using ComPASS, we uncovered distinct mechanisms of signal transmission in diverse macromolecular systems. In Cysteinyl-tRNA synthetase, the central domain was found to mediate coordination between substrate recognition and enzymatic activity, ensuring functional precision. In the LacI repressor, allosteric communication occurs through interface pathways within the dimer, effectively linking ligand sensing to DNA binding. For the Type IIF restriction endonuclease Bse634I, structural communication across the dimer and tetramer interfaces was crucial for specific DNA recognition. In the liver X receptor, a key helical region was identified as a bridge connecting ligand-binding events to DNA interactions. Finally, our analysis with ComPASS aligned with previous literature, confirming the role of H2A L1 loops in mediating communication across histone interfaces and coordinating interactions between structural domains in nucleosome complexes. ComPASS is available as an open-source tool, maintained at https://github.com/yasamankarami/compass. By offering an integrated framework for studying communication networks, ComPASS advances our understanding of conformational dynamics, particularly within protein-nucleic acid complexes.

摘要

残基间通讯形成了一个庞大而复杂的网络,该网络支撑着诸如催化、基因表达和细胞信号传导等重要的生物学过程。变构是一种关键现象,其中大分子的远距离区域在能量上相互耦合以引发功能反应,它通过大分子复合物中的这些复杂通讯网络发挥作用。尽管核酸在这些网络中起着关键作用,但其对变构的贡献在很大程度上被忽视了。为了填补这一空白,我们开发了ComPASS,这是一种大规模计算方法,旨在研究蛋白质-蛋白质和蛋白质-核酸复合物中的通讯网络。认识到动力学在大分子通讯中的重要性,我们的方法利用分子动力学(MD)模拟数据来提取残基间的关键特性,包括动力学相关性、相互作用和距离。这些特性被整合起来构建一个加权通讯网络,该网络全面地表示氨基酸和核苷酸之间的依赖性。使用ComPASS,我们在不同的大分子系统中发现了不同的信号传递机制。在半胱氨酰-tRNA合成酶中,发现中央结构域介导底物识别和酶活性之间的协调,确保功能精确性。在LacI阻遏物中,变构通讯通过二聚体内的界面途径发生,有效地将配体感知与DNA结合联系起来。对于IIF型限制性内切酶Bse634I,跨二聚体和四聚体界面的结构通讯对于特异性DNA识别至关重要。在肝脏X受体中,一个关键的螺旋区域被确定为连接配体结合事件与DNA相互作用的桥梁。最后,我们使用ComPASS的分析与先前的文献一致,证实了H2A L1环在介导组蛋白界面间通讯和协调核小体复合物中结构域间相互作用方面的作用。ComPASS作为一个开源工具可在https://github.com/yasamankarami/compass上获取。通过提供一个研究通讯网络的综合框架,ComPASS推进了我们对构象动力学的理解,特别是在蛋白质-核酸复合物中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验