Huang Xinyu, Schmelter Franziska, Seitzer Christian, Martensen Lars, Otzen Hans, Piet Artur, Witt Oliver, Schröder Torsten, Günther Ulrich L, Marshall Lisa, Grzegorzek Marcin, Sina Christian
Institute of Medical Informatics, University of Luebeck, Lübeck, Germany.
Institute of Nutritional Medicine, University of Luebeck and University Medical Center Schleswig-Holstein, Lübeck, Germany.
Sci Rep. 2025 Aug 18;15(1):30164. doi: 10.1038/s41598-025-14172-z.
A personalized low-glycemic diet, maintaining stable blood glucose levels, aids in weight reduction and managing (pre-)diabetes and migraines in individuals. However, invasiveness, high cost, and limited lifecycle of continuous glucose monitoring (CGM) devices restrict their widespread use. To address these issues, we investigated machine learning (ML) approaches for glucose monitoring using data from non-invasive wearables. Our study comprised two phases involving healthy participants: The main study included two experimental sessions lasting 7-8 h with two standardized test meals, totaling over 1550 interstitial glucose (IG) measurements with CGM, and high-frequency multimodal data collected by two different non-invasive sensor devices. The follow-up study involved more than 14,400 IG measurements. Using ML approaches, correlations between glycemic measures and sensor data were assessed to estimate the feasibility of accurately predicting personalized IG alterations in real-time. An ensemble feature selection-based light gradient boosting machine (LightGBM) algorithm, omitting the need for food logs, was developed. This algorithm achieved a root mean squared error (RMSE) of 18.49 ± 0.1 mg/dL and a mean absolute percentage error (MAPE) of 15.58 ± 0.09%, demonstrating the feasibility of non-invasive glucose monitoring with high accuracy, which paves the way for novel approaches in the objective prevention of diet-related diseases.
个性化的低血糖饮食能够维持稳定的血糖水平,有助于减轻体重,并管理个体的(前期)糖尿病和偏头痛。然而,持续葡萄糖监测(CGM)设备具有侵入性、成本高且使用寿命有限等问题,限制了它们的广泛应用。为了解决这些问题,我们利用来自非侵入式可穿戴设备的数据,研究了用于葡萄糖监测的机器学习(ML)方法。我们的研究包括两个阶段,涉及健康参与者:主要研究包括两个持续7 - 8小时的实验环节,提供两份标准化测试餐,使用CGM总共进行了超过1550次组织间液葡萄糖(IG)测量,并通过两种不同的非侵入式传感器设备收集高频多模态数据。后续研究涉及超过14400次IG测量。使用ML方法,评估了血糖测量值与传感器数据之间的相关性,以估计实时准确预测个性化IG变化的可行性。我们开发了一种基于集成特征选择的轻量级梯度提升机(LightGBM)算法,无需食物记录。该算法的均方根误差(RMSE)为18.49±0.1mg/dL,平均绝对百分比误差(MAPE)为15.58±0.09%,证明了高精度非侵入式葡萄糖监测的可行性,为客观预防饮食相关疾病的新方法铺平了道路。