Netherlands Organisation for Applied Scientific Research (TNO), 2333 BE Leiden, The Netherlands.
Nutrients. 2022 Oct 24;14(21):4465. doi: 10.3390/nu14214465.
Digital health technologies may support the management and prevention of disease through personalized lifestyle interventions. Wearables and smartphones are increasingly used to continuously monitor health and disease in everyday life, targeting health maintenance. Here, we aim to demonstrate the potential of wearables and smartphones to (1) detect eating moments and (2) predict and explain individual glucose levels in healthy individuals, ultimately supporting health self-management. Twenty-four individuals collected continuous data from interstitial glucose monitoring, food logging, activity, and sleep tracking over 14 days. We demonstrated the use of continuous glucose monitoring and activity tracking in detecting eating moments with a prediction model showing an accuracy of 92.3% (87.2-96%) and 76.8% (74.3-81.2%) in the training and test datasets, respectively. Additionally, we showed the prediction of glucose peaks from food logging, activity tracking, and sleep monitoring with an overall mean absolute error of 0.32 (+/-0.04) mmol/L for the training data and 0.62 (+/-0.15) mmol/L for the test data. With Shapley additive explanations, the personal lifestyle elements important for predicting individual glucose peaks were identified, providing a basis for personalized lifestyle advice. Pending further validation of these digital biomarkers, they show promise in supporting the prevention and management of type 2 diabetes through personalized lifestyle recommendations.
数字健康技术可以通过个性化的生活方式干预来支持疾病的管理和预防。可穿戴设备和智能手机越来越多地用于在日常生活中持续监测健康和疾病,以维持健康。在这里,我们旨在展示可穿戴设备和智能手机的潜力,(1)检测进食时刻,(2)预测和解释健康个体的个体血糖水平,最终支持健康自我管理。24 名个体在 14 天内收集了连续的葡萄糖监测、饮食记录、活动和睡眠跟踪数据。我们展示了使用连续血糖监测和活动跟踪来检测进食时刻的预测模型,在训练数据集和测试数据集中的准确率分别为 92.3%(87.2-96%)和 76.8%(74.3-81.2%)。此外,我们还展示了从饮食记录、活动跟踪和睡眠监测预测血糖峰值的能力,训练数据的总体平均绝对误差为 0.32(+/-.04)mmol/L,测试数据的总体平均绝对误差为 0.62(+/-.15)mmol/L。通过 Shapley 可加性解释,确定了预测个体血糖峰值的个人生活方式元素的重要性,为个性化的生活方式建议提供了基础。这些数字生物标志物有待进一步验证,但它们有望通过个性化的生活方式建议来支持 2 型糖尿病的预防和管理。