Li Shiying, Wang Ruohan, Liu Sitong, Li Shuai Cheng
Department of Computer Science, City University of Hong Kong, Hong Kong, China.
City University of Hong Kong Shenzhen Research Institute, Shenzhen, China.
Nat Commun. 2025 Aug 21;16(1):7784. doi: 10.1038/s41467-025-62988-0.
Spatial transcriptomics has emerged as a groundbreaking tool for the study of intercellular ligand-receptor interactions (LRIs) that exhibit spatial variability. To identify spatially variable LRIs with activation evidence, we present SPIDER, which constructs cell-cell interaction interfaces constrained by cellular interaction capacity, and profiles and identifies spatially variable interaction (SVI) signals with support from downstream transcript factors via multiple probabilistic models. SPIDER demonstrates superior performance regarding accuracy, specificity, and spatial variance relative to existing methods. Experiments of simulations and real datasets in bulk and single-cell resolutions validate SPIDER-identified SVIs by spatial autocorrelation and correlation with downstream target genes, and reveal their consistency across multiple biological replicates. Particularly, distinct SVIs on mouse datasets reveal the potential in representing regional and inter-cell type interactions. SPIDER groups SVIs with similar spatial distributions into SVI patterns that are supported by strong Pearson correlations on spot annotations, generating interaction-based sub-clusters within cell-type regions, and deriving enriched pathways.
空间转录组学已成为研究具有空间变异性的细胞间配体-受体相互作用(LRI)的开创性工具。为了识别具有激活证据的空间可变LRI,我们提出了SPIDER,它构建受细胞相互作用能力约束的细胞-细胞相互作用界面,并通过多个概率模型在下游转录因子的支持下分析和识别空间可变相互作用(SVI)信号。相对于现有方法,SPIDER在准确性、特异性和空间方差方面表现出卓越的性能。在批量和单细胞分辨率下的模拟和真实数据集实验通过空间自相关以及与下游靶基因的相关性验证了SPIDER识别的SVI,并揭示了它们在多个生物学重复中的一致性。特别是,小鼠数据集上不同的SVI揭示了其在表征区域和细胞间类型相互作用方面的潜力。SPIDER将具有相似空间分布的SVI分组为SVI模式,这些模式在斑点注释上具有很强的皮尔逊相关性支持,在细胞类型区域内生成基于相互作用的子簇,并推导富集通路。