Suppr超能文献

深度学习通过传感器数据预测老年人术后的活动能力、日常生活活动及出院去向。

Deep Learning Predicts Postoperative Mobility, Activities of Daily Living, and Discharge Destination in Older Adults from Sensor Data.

作者信息

Kocar Thomas Derya, Brefka Simone, Leinert Christoph, Rieger Utz Lovis, Kestler Hans, Dallmeier Dhayana, Klenk Jochen, Denkinger Michael

机构信息

Institute for Geriatric Research at AGAPLESION Bethesda Ulm, Ulm University Medical Center, 89081 Ulm, Germany.

Geriatric Center Ulm, Ulm 89073, Germany.

出版信息

Sensors (Basel). 2025 Aug 13;25(16):5021. doi: 10.3390/s25165021.

Abstract

The growing proportion of older adults in the population necessitates improved methods for assessing functional recovery. Objective, continuous monitoring using wearable sensors offers a promising alternative to traditional, often subjective assessments. This study aimed to investigate the utility of inertial measurement unit (IMU)-based data, combined with deep learning, to predict postoperative mobility, activities of daily living, and discharge destination in older adults following surgery. Data from the SURGE-Ahead project was analyzed, involving 39 patients (mean age 79.05 years) wearing lumbar IMU sensors for up to five postoperative days. Deep learning models (TabPFN) were applied and validated using leave-one-out cross-validation to predict the Charité Mobility Index (CHARMI), the Barthel Index, and discharge destination. The TabPFN model achieved R values of 0.65 and 0.70 for predicting CHARMI and Barthel Index scores, respectively, with moderate to strong agreement with human assessments (weighted kappa ≥ 0.80). Discharge destination was predicted with an accuracy of 82%. The z-channel IMU data and parameters related to walking bouts were most predictive of outcomes. IMU-based data, combined with deep learning, demonstrates potential for automated functional assessment and discharge decision support in older adults following surgery.

摘要

老年人口在总人口中的比例不断增加,这就需要改进评估功能恢复的方法。使用可穿戴传感器进行客观、持续的监测为传统的、往往主观的评估提供了一种有前景的替代方法。本研究旨在探讨基于惯性测量单元(IMU)的数据结合深度学习,用于预测老年人术后的活动能力、日常生活活动能力及出院去向的效用。对来自SURGE - Ahead项目的数据进行了分析,该项目涉及39例患者(平均年龄79.05岁),他们在术后最多五天佩戴腰部IMU传感器。应用深度学习模型(TabPFN)并采用留一法交叉验证进行验证,以预测查里特活动指数(CHARMI)、巴氏指数和出院去向。TabPFN模型预测CHARMI和巴氏指数评分的R值分别为0.65和0.70,与人工评估有中度到高度的一致性(加权kappa≥0.80)。出院去向的预测准确率为82%。z通道IMU数据和与步行时段相关的参数对结果的预测性最强。基于IMU的数据结合深度学习,显示出在老年人术后自动功能评估和出院决策支持方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4b7/12389988/e60854d91d18/sensors-25-05021-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验