Suppr超能文献

网络药理学与机器学习确定黄酮类化合物为潜在的衰老治疗药物。

Network Pharmacology and Machine Learning Identify Flavonoids as Potential Senotherapeutics.

作者信息

Santiago-de-la-Cruz Jose Alberto, Rivero-Segura Nadia Alejandra, Alvarez-Sánchez María Elizbeth, Gomez-Verjan Juan Carlos

机构信息

Dirección de Investigación, Instituto Nacional Geriatría (INGER), Mexico City 10200, Mexico.

Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, San Lorenzo 290, Col. Del Valle, Mexico City 03100, Mexico.

出版信息

Pharmaceuticals (Basel). 2025 Aug 9;18(8):1176. doi: 10.3390/ph18081176.

Abstract

Cellular senescence is characterised by irreversible cell cycle arrest and the secretion of a proinflammatory phenotype. In recent years, senescent cell accumulation and senescence-associated secretory phenotype (SASP) secretion have been linked to the onset of chronic degenerative diseases associated with ageing. In this context, the senotherapeutic compounds have emerged as promising drugs that specifically eliminate senescent cells (senolytics) or diminish the damage caused by SASP (senomorphics). On the other hand, computational approaches, such as network pharmacology and machine learning, have revolutionised the identification of novel drugs. These tools enable the analysis of large volumes of compounds and the optimisation of the search for the most promising ones as potential drugs. Therefore, we employed such approaches in the present study to identify potential senotherapeutic compounds. First, we constructed drug-protein interaction networks related to cellular senescence. Then, using three machine learning models (Random Forest, Support Vector Machine, and K-Nearest Neighbours), we classified these compounds based on their therapeutic potential against senescence. Our results enabled us to identify 714 compounds with potential senescent therapeutic activity, of which 270 exhibited desirable medicinal chemistry properties, and we developed an interactive web tool freely accessible to the scientific community. we found that flavonoids were the most abundant compound class from which 18 have never been reported as senotherapeutics.

摘要

细胞衰老的特征是不可逆的细胞周期停滞和促炎表型的分泌。近年来,衰老细胞的积累和衰老相关分泌表型(SASP)的分泌与衰老相关的慢性退行性疾病的发生有关。在这种背景下,衰老治疗化合物已成为有前景的药物,可特异性消除衰老细胞(衰老溶解剂)或减少SASP造成的损害(衰老形态调节剂)。另一方面,计算方法,如网络药理学和机器学习,已经彻底改变了新型药物的识别。这些工具能够分析大量化合物,并优化寻找最有前景的潜在药物。因此,我们在本研究中采用这些方法来识别潜在的衰老治疗化合物。首先,我们构建了与细胞衰老相关的药物-蛋白质相互作用网络。然后,使用三种机器学习模型(随机森林、支持向量机和K近邻),我们根据这些化合物对衰老的治疗潜力对其进行分类。我们的结果使我们能够识别出714种具有潜在衰老治疗活性的化合物,其中270种具有理想的药物化学性质,并且我们开发了一个可供科学界免费使用的交互式网络工具。我们发现黄酮类化合物是最丰富的化合物类别,其中18种从未被报道为衰老治疗药物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/227c/12389116/15dea3cbd36f/pharmaceuticals-18-01176-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验