Suppr超能文献

癌症药物研发中的合成致死性:挑战与机遇

Synthetic lethality in cancer drug discovery: challenges and opportunities.

作者信息

Gonçalves Emanuel, Ryan Colm J, Adams David J

机构信息

Instituto Superior Técnico (IST), Universidade de Lisboa, Lisboa, Portugal.

INESC-ID, Lisboa, Portugal.

出版信息

Nat Rev Drug Discov. 2025 Sep 11. doi: 10.1038/s41573-025-01273-7.

Abstract

Synthetic lethality, first proposed more than two decades ago, has long held immense promise for targeted cancer therapy. Although the clinical success of PARP inhibition in BRCA-mutant cancers stands as proof of concept, few other synthetic lethal interactions have been translated from preclinical findings into effective therapies. This slow pace of translation stems in part from the difficulty of developing drugs against genetic dependencies, but also reflects the cell- and tissue-specific nature of these interactions. In this Review, we outline recent advances in the discovery and validation of synthetic lethal pairs, from their discovery in large-scale genetic screens to the development of drugs for the clinic. We discuss how alternative CRISPR-based approaches - including combinatorial screens, base editing and saturation mutagenesis - are now being used to discover new tractable interactions. We also examine how machine learning models can enable prioritization of candidate pairs and the identification of biomarkers for patient stratification. Finally, we highlight alternative phenotypic readouts, such as high-content imaging and single-cell profiling, which enable the dissection of phenotypes beyond simple cell growth or fitness. Together, these developments are refining the synthetic lethality paradigm and advancing its potential for cancer therapy.

摘要

合成致死性在二十多年前首次被提出,长期以来一直对靶向癌症治疗有着巨大的前景。尽管PARP抑制在BRCA突变癌症中的临床成功证明了这一概念,但很少有其他合成致死相互作用从临床前研究结果转化为有效的治疗方法。这种缓慢的转化速度部分源于开发针对基因依赖性的药物的困难,但也反映了这些相互作用的细胞和组织特异性本质。在本综述中,我们概述了合成致死对发现和验证方面的最新进展,从它们在大规模基因筛选中的发现到临床药物的开发。我们讨论了基于CRISPR的替代方法——包括组合筛选、碱基编辑和饱和诱变——现在如何被用于发现新的可处理的相互作用。我们还研究了机器学习模型如何能够对候选对进行优先级排序以及识别用于患者分层的生物标志物。最后,我们强调了替代的表型读数,如高内涵成像和单细胞分析,它们能够剖析除简单细胞生长或适应性之外的表型。这些进展共同完善了合成致死范式,并推动了其在癌症治疗中的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验