Cheung Kwok Aaron Wing, Shim Heejung, McCarthy Davis J
Bioinformatics and Cellular Genomics, St Vincent's Institute of Medical Research, 3065, Fitzroy, VIC, Australia.
Melbourne Integrative Genomics, University of Melbourne, 3010, Parkville, VIC, Australia.
Genome Biol. 2025 Sep 17;26(1):282. doi: 10.1186/s13059-025-03735-y.
Data from Single-cell Assay for Transposase Accessible Chromatin with Sequencing (scATAC-seq) is highly sparse. While current computational methods feature a range of transformation procedures to extract meaningful information, major challenges remain.
Here, we discuss the major scATAC-seq data analysis challenges such as sequencing depth normalization and region-specific biases. We present a hierarchical count model that is motivated by the data generating process of scATAC-seq data. Our simulations show that current scATAC-seq data, while clearly containing physical single-cell resolution, are too sparse to infer true informational-level single-cell, single-region of chromatin accessibility states.
While the broad utility of scATAC-seq at a cell type level is undeniable, describing it as fully resolving chromatin accessibility at single-cell resolution, particularly at individual locus level, may overstate the level of detail currently achievable. We conclude that chromatin accessibility profiling at true single-cell, single-region resolution is challenging with current data sensitivity, but that it may be achieved with promising developments in optimizing the efficiency of scATAC-seq assays.
来自转座酶可及染色质单细胞测序分析(scATAC-seq)的数据非常稀疏。虽然当前的计算方法具有一系列转换程序来提取有意义的信息,但主要挑战仍然存在。
在这里,我们讨论了scATAC-seq数据分析的主要挑战,如测序深度归一化和区域特异性偏差。我们提出了一种分层计数模型,该模型受scATAC-seq数据生成过程的启发。我们的模拟表明,当前的scATAC-seq数据虽然明显包含物理单细胞分辨率,但过于稀疏,无法推断真正的信息级单细胞、单染色质可及性区域状态。
虽然scATAC-seq在细胞类型水平上的广泛实用性不可否认,但将其描述为完全以单细胞分辨率解析染色质可及性,特别是在单个基因座水平上,可能夸大了目前可实现的细节程度。我们得出结论,以真正的单细胞、单区域分辨率进行染色质可及性分析对当前的数据敏感性来说具有挑战性,但通过优化scATAC-seq分析效率的有前景的发展可能会实现。