Suppr超能文献

酿酒酵母中L-脯氨酸的积累和耐冻性是由编码γ-谷氨酰激酶的PRO1基因突变引起的。

L-proline accumulation and freeze tolerance of Saccharomyces cerevisiae are caused by a mutation in the PRO1 gene encoding gamma-glutamyl kinase.

作者信息

Morita Yuko, Nakamori Shigeru, Takagi Hiroshi

机构信息

Department of Bioscience, Fukui Prefectural University, 4-1-1 Kenjojima, Fukui 910-1195, Japan.

出版信息

Appl Environ Microbiol. 2003 Jan;69(1):212-9. doi: 10.1128/AEM.69.1.212-219.2003.

Abstract

We previously isolated a mutant which showed a high tolerance to freezing that correlated with higher levels of intracellular L-proline derived from L-proline analogue-resistant mutants. The mutation responsible for the analogue resistance and L-proline accumulation was a single nuclear dominant mutation. By introducing the mutant-derived genomic library into a non-L-proline-utilizing strain, the mutant was found to carry an allele of the wild-type PRO1 gene encoding gamma-glutamyl kinase, which resulted in a single amino acid replacement; Asp (GAC) at position 154 was replaced by Asn (AAC). Interestingly, the allele of PRO1 was shown to enhance the activities of gamma-glutamyl kinase and gamma-glutamyl phosphate reductase, both of which catalyze the first two steps of L-proline synthesis from L-glutamate and which together may form a complex in vivo. When cultured in liquid minimal medium, yeast cells expressing the mutated gamma-glutamyl kinase were found to accumulate intracellular L-proline and showed a prominent increase in cell viability after freezing at -20 degrees C compared to the viability of cells harboring the wild-type PRO1 gene. These results suggest that the altered gamma-glutamyl kinase results in stabilization of the complex or has an indirect effect on gamma-glutamyl phosphate reductase activity, which leads to an increase in L-proline production in Saccharomyces cerevisiae. The approach described in this paper could be a practical method for breeding novel freeze-tolerant yeast strains.

摘要

我们之前分离出了一个突变体,它对冷冻表现出高度耐受性,这与源自L-脯氨酸类似物抗性突变体的细胞内L-脯氨酸水平较高相关。导致类似物抗性和L-脯氨酸积累的突变是一个单基因显性突变。通过将源自该突变体的基因组文库导入一个不利用L-脯氨酸的菌株,发现该突变体携带野生型PRO1基因的一个等位基因,该基因编码γ-谷氨酰激酶,导致一个氨基酸替换;第154位的天冬氨酸(GAC)被天冬酰胺(AAC)取代。有趣的是,PRO1的等位基因显示出增强了γ-谷氨酰激酶和γ-谷氨酰磷酸还原酶的活性,这两种酶都催化从L-谷氨酸合成L-脯氨酸的前两个步骤,并且它们在体内可能共同形成一个复合物。当在液体基本培养基中培养时,与携带野生型PRO1基因的细胞活力相比,表达突变型γ-谷氨酰激酶的酵母细胞被发现积累细胞内L-脯氨酸,并且在-20℃冷冻后细胞活力显著增加。这些结果表明,改变的γ-谷氨酰激酶导致复合物稳定或对γ-谷氨酰磷酸还原酶活性有间接影响,这导致酿酒酵母中L-脯氨酸产量增加。本文所述方法可能是培育新型耐冷冻酵母菌株的一种实用方法。

相似文献

2
Gene dosage effect of L-proline biosynthetic enzymes on L-proline accumulation and freeze tolerance in Saccharomyces cerevisiae.
Appl Environ Microbiol. 2003 Nov;69(11):6527-32. doi: 10.1128/AEM.69.11.6527-6532.2003.
3
Isolation of baker's yeast mutants with proline accumulation that showed enhanced tolerance to baking-associated stresses.
Int J Food Microbiol. 2016 Dec 5;238:233-240. doi: 10.1016/j.ijfoodmicro.2016.09.015. Epub 2016 Sep 22.
6
Effects of a novel variant of the yeast γ-glutamyl kinase Pro1 on its enzymatic activity and sake brewing.
J Ind Microbiol Biotechnol. 2020 Oct;47(9-10):715-723. doi: 10.1007/s10295-020-02297-1. Epub 2020 Aug 3.
7
Effect of L-proline on sake brewing and ethanol stress in Saccharomyces cerevisiae.
Appl Environ Microbiol. 2005 Dec;71(12):8656-62. doi: 10.1128/AEM.71.12.8656-8662.2005.
9
Self-cloning baker's yeasts that accumulate proline enhance freeze tolerance in doughs.
Appl Environ Microbiol. 2008 Sep;74(18):5845-9. doi: 10.1128/AEM.00998-08. Epub 2008 Jul 18.

引用本文的文献

1
Enhancing freeze-thaw tolerance in baker's yeast: strategies and perspectives.
Food Sci Biotechnol. 2024 Jul 3;33(13):2953-2969. doi: 10.1007/s10068-024-01637-6. eCollection 2024 Oct.
3
Glucosylglycerol and proline reverse the effects of glucose on Rhodosporidium toruloides lifespan.
Arch Microbiol. 2024 Mar 28;206(4):195. doi: 10.1007/s00203-024-03930-8.
4
Proline-conditioning and chemically-programmed ice nucleation protects spheroids during cryopreservation.
Chem Commun (Camb). 2023 Jul 20;59(59):9086-9089. doi: 10.1039/d3cc02252h.
5
Chemical approaches to cryopreservation.
Nat Rev Chem. 2022 Aug;6(8):579-593. doi: 10.1038/s41570-022-00407-4. Epub 2022 Jul 18.
6
Exogenous glucosylglycerol and proline extend the chronological lifespan of Rhodosporidium toruloides.
Int Microbiol. 2023 Nov;26(4):807-819. doi: 10.1007/s10123-023-00336-2. Epub 2023 Feb 14.
7
Chemical approaches to cryopreservation.
Nat Rev Chem. 2022;6(8):579-593. doi: 10.1038/s41570-022-00407-4. Epub 2022 Jul 18.
8
Proline confers acid stress tolerance to Bacillus megaterium G18.
Sci Rep. 2022 May 25;12(1):8875. doi: 10.1038/s41598-022-12709-0.
9
Effects of a novel variant of the yeast γ-glutamyl kinase Pro1 on its enzymatic activity and sake brewing.
J Ind Microbiol Biotechnol. 2020 Oct;47(9-10):715-723. doi: 10.1007/s10295-020-02297-1. Epub 2020 Aug 3.
10
Proline Homeostasis in : How Does the Stress-Responsive Transcription Factor Msn2 Play a Role?
Front Genet. 2020 Apr 28;11:438. doi: 10.3389/fgene.2020.00438. eCollection 2020.

本文引用的文献

2
Selection of yeasts for breadmaking by the frozen-dough method.
Appl Environ Microbiol. 1986 Oct;52(4):941-3. doi: 10.1128/aem.52.4.941-943.1986.
4
A novel acetyltransferase found in Saccharomyces cerevisiae Sigma1278b that detoxifies a proline analogue, azetidine-2-carboxylic acid.
J Biol Chem. 2001 Nov 9;276(45):41998-2002. doi: 10.1074/jbc.C100487200. Epub 2001 Sep 12.
7
Proline inhibits aggregation during protein refolding.
Protein Sci. 2000 Feb;9(2):344-52. doi: 10.1110/ps.9.2.344.
10
Construction of a proline-producing mutant of the extremely thermophilic eubacterium Thermus thermophilus HB27.
Appl Environ Microbiol. 1998 Nov;64(11):4328-32. doi: 10.1128/AEM.64.11.4328-4332.1998.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验