Stahelin Robert V, Digman Michelle A, Medkova Martina, Ananthanarayanan Bharath, Melowic Heather R, Rafter John D, Cho Wonhwa
Department of Chemistry, University of Illinois, Chicago, 60607, USA.
J Biol Chem. 2005 May 20;280(20):19784-93. doi: 10.1074/jbc.M411285200. Epub 2005 Mar 15.
Two novel protein kinases C (PKC), PKCdelta and PKCepsilon, have been reported to have opposing functions in some mammalian cells. To understand the basis of their distinct cellular functions and regulation, we investigated the mechanism of in vitro and cellular sn-1,2-diacylglycerol (DAG)-mediated membrane binding of PKCepsilon and compared it with that of PKCdelta. The regulatory domains of novel PKC contain a C2 domain and a tandem repeat of C1 domains (C1A and C1B), which have been identified as the interaction site for DAG and phorbol ester. Isothermal titration calorimetry and surface plasmon resonance measurements showed that isolated C1A and C1B domains of PKCepsilon have comparably high affinities for DAG and phorbol ester. Furthermore, in vitro activity and membrane binding analyses of PKCepsilon mutants showed that both the C1A and C1B domains play a role in the DAG-induced membrane binding and activation of PKCepsilon. The C1 domains of PKCepsilon are not conformationally restricted and readily accessible for DAG binding unlike those of PKCdelta. Consequently, phosphatidylserine-dependent unleashing of C1 domains seen with PKCdelta was not necessary for PKCepsilon. Cell studies with fluorescent protein-tagged PKCs showed that, due to the lack of lipid headgroup selectivity, PKCepsilon translocated to both the plasma membrane and the nuclear membrane, whereas PKCdelta migrates specifically to the plasma membrane under the conditions in which DAG is evenly distributed among intracellular membranes of HEK293 cells. Also, PKCepsilon translocated much faster than PKCdelta due to conformational flexibility of its C1 domains. Collectively, these results provide new insight into the differential activation mechanisms of PKCdelta and PKCepsilon based on different structural and functional properties of their C1 domains.
据报道,两种新型蛋白激酶C(PKC),即PKCδ和PKCε,在某些哺乳动物细胞中具有相反的功能。为了理解它们不同细胞功能和调控的基础,我们研究了PKCε在体外和细胞内由sn-1,2-二酰基甘油(DAG)介导的膜结合机制,并将其与PKCδ的机制进行比较。新型PKC的调节结构域包含一个C2结构域和C1结构域(C1A和C1B)的串联重复序列,这些结构域已被确定为DAG和佛波酯的相互作用位点。等温滴定量热法和表面等离子体共振测量表明,PKCε分离的C1A和C1B结构域对DAG和佛波酯具有相当高的亲和力。此外,PKCε突变体的体外活性和膜结合分析表明,C1A和C1B结构域在DAG诱导的PKCε膜结合和激活中均起作用。与PKCδ不同,PKCε的C1结构域在构象上不受限制,易于与DAG结合。因此,PKCδ所见的磷脂酰丝氨酸依赖性C1结构域释放对PKCε来说并非必要。用荧光蛋白标记的PKC进行的细胞研究表明,由于缺乏脂质头部基团选择性,PKCε可转运至质膜和核膜,而在DAG均匀分布于HEK293细胞内膜的条件下,PKCδ特异性迁移至质膜。此外,由于其C1结构域的构象灵活性,PKCε的转运速度比PKCδ快得多。总体而言,这些结果基于PKCδ和PKCε的C1结构域不同的结构和功能特性,为它们的差异激活机制提供了新的见解。