Suppr超能文献

DeltaF508-CFTR突变通过增加铁的可利用性导致铜绿假单胞菌生物膜形成增加。

The DeltaF508-CFTR mutation results in increased biofilm formation by Pseudomonas aeruginosa by increasing iron availability.

作者信息

Moreau-Marquis Sophie, Bomberger Jennifer M, Anderson Gregory G, Swiatecka-Urban Agnieszka, Ye Siying, O'Toole George A, Stanton Bruce A

机构信息

Department of Physiology, Dartmouth Medical School, Hanover, NH 03755, USA.

出版信息

Am J Physiol Lung Cell Mol Physiol. 2008 Jul;295(1):L25-37. doi: 10.1152/ajplung.00391.2007. Epub 2008 Mar 21.

Abstract

Enhanced antibiotic resistance of Pseudomonas aeruginosa in the cystic fibrosis (CF) lung is thought to be due to the formation of biofilms. However, there is no information on the antibiotic resistance of P. aeruginosa biofilms grown on human airway epithelial cells or on the effects of airway cells on biofilm formation by P. aeruginosa. Thus we developed a coculture model and report that airway cells increase the resistance of P. aeruginosa to tobramycin (Tb) by >25-fold compared with P. aeruginosa grown on abiotic surfaces. Therefore, the concentration of Tb required to kill P. aeruginosa biofilms on airway cells is 10-fold higher than the concentration achievable in the lungs of CF patients. In addition, CF airway cells expressing DeltaF508-CFTR significantly enhanced P. aeruginosa biofilm formation, and DeltaF508 rescue with wild-type CFTR reduced biofilm formation. Iron (Fe) content of the airway in CF is elevated, and Fe is known to enhance P. aeruginosa growth. Thus we investigated whether enhanced biofilm formation on DeltaF508-CFTR cells was due to increased Fe release by airway cells. We found that airway cells expressing DeltaF508-CFTR released more Fe than cells rescued with WT-CFTR. Moreover, Fe chelation reduced biofilm formation on airway cells, whereas Fe supplementation enhanced biofilm formation on airway cells expressing WT-CFTR. These data demonstrate that human airway epithelial cells promote the formation of P. aeruginosa biofilms with a dramatically increased antibiotic resistance. The DeltaF508-CFTR mutation enhances biofilm formation, in part, by increasing Fe release into the apical medium.

摘要

囊性纤维化(CF)肺部的铜绿假单胞菌抗生素耐药性增强被认为是由于生物膜的形成。然而,关于在人气道上皮细胞上生长的铜绿假单胞菌生物膜的抗生素耐药性,或气道细胞对铜绿假单胞菌生物膜形成的影响,尚无相关信息。因此,我们建立了一种共培养模型,并报告称,与在非生物表面生长的铜绿假单胞菌相比,气道细胞使铜绿假单胞菌对妥布霉素(Tb)的耐药性增加了25倍以上。因此,杀死气道细胞上铜绿假单胞菌生物膜所需的Tb浓度比CF患者肺部所能达到的浓度高10倍。此外,表达DeltaF508 - CFTR的CF气道细胞显著增强了铜绿假单胞菌生物膜的形成,而用野生型CFTR进行DeltaF508挽救则减少了生物膜的形成。CF患者气道中的铁(Fe)含量升高,且已知铁可促进铜绿假单胞菌生长。因此,我们研究了DeltaF508 - CFTR细胞上生物膜形成增强是否是由于气道细胞释放铁增加所致。我们发现,表达DeltaF508 - CFTR的气道细胞比用WT - CFTR挽救的细胞释放更多的铁。此外,铁螯合减少了气道细胞上的生物膜形成,而补充铁则增强了表达WT - CFTR的气道细胞上的生物膜形成。这些数据表明,人气道上皮细胞促进了具有显著增加的抗生素耐药性的铜绿假单胞菌生物膜的形成。DeltaF508 - CFTR突变部分通过增加向顶端培养基中释放铁来增强生物膜的形成。

相似文献

1
The DeltaF508-CFTR mutation results in increased biofilm formation by Pseudomonas aeruginosa by increasing iron availability.
Am J Physiol Lung Cell Mol Physiol. 2008 Jul;295(1):L25-37. doi: 10.1152/ajplung.00391.2007. Epub 2008 Mar 21.
2
Cystic fibrosis: ironing out the problem of infection?
Am J Physiol Lung Cell Mol Physiol. 2008 Jul;295(1):L23-4. doi: 10.1152/ajplung.90299.2008. Epub 2008 May 16.
4
In vitro analysis of tobramycin-treated Pseudomonas aeruginosa biofilms on cystic fibrosis-derived airway epithelial cells.
Infect Immun. 2008 Apr;76(4):1423-33. doi: 10.1128/IAI.01373-07. Epub 2008 Jan 22.
5
Tobramycin and FDA-approved iron chelators eliminate Pseudomonas aeruginosa biofilms on cystic fibrosis cells.
Am J Respir Cell Mol Biol. 2009 Sep;41(3):305-13. doi: 10.1165/rcmb.2008-0299OC. Epub 2009 Jan 23.
6
Does the F508-CFTR mutation induce a proinflammatory response in human airway epithelial cells?
Am J Physiol Lung Cell Mol Physiol. 2012 Sep 15;303(6):L509-18. doi: 10.1152/ajplung.00226.2011. Epub 2012 Jul 20.
7
Pseudomonas aeruginosa inhibits endocytic recycling of CFTR in polarized human airway epithelial cells.
Am J Physiol Cell Physiol. 2006 Mar;290(3):C862-72. doi: 10.1152/ajpcell.00108.2005. Epub 2005 Oct 19.

引用本文的文献

3
Assessment of the efficacy of an antimicrobial peptide in the context of cystic fibrosis airways.
Curr Res Microb Sci. 2025 Feb 28;8:100367. doi: 10.1016/j.crmicr.2025.100367. eCollection 2025.
4
Establishment and characterization of persistent infections in air-liquid interface cultures of human airway epithelial cells.
Infect Immun. 2025 Mar 11;93(3):e0060324. doi: 10.1128/iai.00603-24. Epub 2025 Feb 18.
5
RNA-seq reproducibility of in laboratory models of cystic fibrosis.
Microbiol Spectr. 2025 Jan 7;13(1):e0151324. doi: 10.1128/spectrum.01513-24. Epub 2024 Dec 3.
6
Modeling Cystic Fibrosis Chronic Infection Using Engineered Mucus-like Hydrogels.
ACS Biomater Sci Eng. 2024 Oct 14;10(10):6558-6568. doi: 10.1021/acsbiomaterials.4c01271. Epub 2024 Sep 19.
7
Recreating chronic respiratory infections using physiologically relevant models.
Eur Respir Rev. 2024 Aug 14;33(173). doi: 10.1183/16000617.0062-2024. Print 2024 Jul.
8
Pseudomonas aeruginosa senses and responds to epithelial potassium flux via Kdp operon to promote biofilm.
PLoS Pathog. 2024 May 31;20(5):e1011453. doi: 10.1371/journal.ppat.1011453. eCollection 2024 May.
9
A c-di-GMP signaling module controls responses to iron in Pseudomonas aeruginosa.
Nat Commun. 2024 Feb 29;15(1):1860. doi: 10.1038/s41467-024-46149-3.

本文引用的文献

1
Growing and analyzing static biofilms.
Curr Protoc Microbiol. 2005 Jul;Chapter 1:Unit 1B.1. doi: 10.1002/9780471729259.mc01b01s00.
3
Increased airway iron as a potential factor in the persistence of Pseudomonas aeruginosa infection in cystic fibrosis.
Eur Respir J. 2007 Aug;30(2):286-92. doi: 10.1183/09031936.00154006. Epub 2007 May 15.
4
Effects of iron on DNA release and biofilm development by Pseudomonas aeruginosa.
Microbiology (Reading). 2007 May;153(Pt 5):1318-1328. doi: 10.1099/mic.0.2006/004911-0.
5
A physical linkage between cystic fibrosis airway surface dehydration and Pseudomonas aeruginosa biofilms.
Proc Natl Acad Sci U S A. 2006 Nov 28;103(48):18131-6. doi: 10.1073/pnas.0606428103. Epub 2006 Nov 20.
6
Does Pseudomonas aeruginosa use intercellular signalling to build biofilm communities?
Cell Microbiol. 2006 Dec;8(12):1841-9. doi: 10.1111/j.1462-5822.2006.00817.x. Epub 2006 Oct 4.
8
Bacterial neuraminidase facilitates mucosal infection by participating in biofilm production.
J Clin Invest. 2006 Aug;116(8):2297-2305. doi: 10.1172/JCI27920.
9
Chelator-induced dispersal and killing of Pseudomonas aeruginosa cells in a biofilm.
Appl Environ Microbiol. 2006 Mar;72(3):2064-9. doi: 10.1128/AEM.72.3.2064-2069.2006.
10
Iron availability influences aggregation, biofilm, adhesion and invasion of Pseudomonas aeruginosa and Burkholderia cenocepacia.
Int J Immunopathol Pharmacol. 2005 Oct-Dec;18(4):661-70. doi: 10.1177/039463200501800407.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验