Anderson Gregory G, Moreau-Marquis Sophie, Stanton Bruce A, O'Toole George A
Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, New Hampshire 03755, USA.
Infect Immun. 2008 Apr;76(4):1423-33. doi: 10.1128/IAI.01373-07. Epub 2008 Jan 22.
P. aeruginosa forms biofilms in the lungs of individuals with cystic fibrosis (CF); however, there have been no effective model systems for studying biofilm formation in the CF lung. We have developed a tissue culture system for growth of P. aeruginosa biofilms on CF-derived human airway cells that promotes the formation of highly antibiotic-resistant microcolonies, which produce an extracellular polysaccharide matrix and require the known abiotic biofilm formation genes flgK and pilB. Treatment of P. aeruginosa biofilms with tobramycin reduced the virulence of the biofilms both by reducing bacterial numbers and by altering virulence gene expression. We performed microarray analysis of these biofilms on epithelial cells after treatment with tobramycin, and we compared these results with gene expression of (i) tobramycin-treated planktonic P. aeruginosa and (ii) tobramycin-treated P. aeruginosa biofilms on an abiotic surface. Despite the conservation in functions required to form a biofilm, our results show that the responses to tobramycin treatment of biofilms grown on biotic versus abiotic surfaces are different, as exemplified by downregulation of genes involved in Pseudomonas quinolone signal biosynthesis specifically in epithelial cell-grown biofilms versus plastic-grown biofilms. We also identified the gene PA0913, which is upregulated by tobramycin specifically in biofilms grown on CF airway cells and codes for a probable magnesium transporter, MgtE. Mutation of the PA0913 gene increased the bacterial virulence of biofilms on the epithelial cells, consistent with a role for the gene in the suppression of bacterial virulence. Taken together, our data show that analysis of biofilms on airway cells provides new insights into the interaction of these microbial communities with the host.
铜绿假单胞菌在囊性纤维化(CF)患者的肺部形成生物膜;然而,一直没有用于研究CF肺部生物膜形成的有效模型系统。我们开发了一种组织培养系统,用于在源自CF的人气道细胞上培养铜绿假单胞菌生物膜,该系统促进形成高度耐抗生素的微菌落,这些微菌落产生细胞外多糖基质,并且需要已知的非生物膜形成基因flgK和pilB。用妥布霉素处理铜绿假单胞菌生物膜,通过减少细菌数量和改变毒力基因表达,降低了生物膜的毒力。我们对用妥布霉素处理后的上皮细胞上的这些生物膜进行了微阵列分析,并将这些结果与(i)用妥布霉素处理的浮游铜绿假单胞菌以及(ii)用妥布霉素处理的非生物表面上的铜绿假单胞菌生物膜的基因表达进行了比较。尽管形成生物膜所需的功能具有保守性,但我们的结果表明,在生物表面与非生物表面上生长的生物膜对妥布霉素处理的反应是不同的,例如,参与假单胞菌喹诺酮信号生物合成的基因在上皮细胞生长的生物膜中与塑料生长的生物膜相比有特异性下调。我们还鉴定了基因PA0913,该基因在CF气道细胞上生长的生物膜中被妥布霉素特异性上调,编码一种可能的镁转运蛋白MgtE。PA0913基因突变增加了上皮细胞上生物膜的细菌毒力,这与该基因在抑制细菌毒力中的作用一致。综上所述,我们的数据表明,对气道细胞上生物膜的分析为这些微生物群落与宿主之间的相互作用提供了新的见解。