Suppr超能文献

妥布霉素处理的囊性纤维化来源的气道上皮细胞上铜绿假单胞菌生物膜的体外分析

In vitro analysis of tobramycin-treated Pseudomonas aeruginosa biofilms on cystic fibrosis-derived airway epithelial cells.

作者信息

Anderson Gregory G, Moreau-Marquis Sophie, Stanton Bruce A, O'Toole George A

机构信息

Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, New Hampshire 03755, USA.

出版信息

Infect Immun. 2008 Apr;76(4):1423-33. doi: 10.1128/IAI.01373-07. Epub 2008 Jan 22.

Abstract

P. aeruginosa forms biofilms in the lungs of individuals with cystic fibrosis (CF); however, there have been no effective model systems for studying biofilm formation in the CF lung. We have developed a tissue culture system for growth of P. aeruginosa biofilms on CF-derived human airway cells that promotes the formation of highly antibiotic-resistant microcolonies, which produce an extracellular polysaccharide matrix and require the known abiotic biofilm formation genes flgK and pilB. Treatment of P. aeruginosa biofilms with tobramycin reduced the virulence of the biofilms both by reducing bacterial numbers and by altering virulence gene expression. We performed microarray analysis of these biofilms on epithelial cells after treatment with tobramycin, and we compared these results with gene expression of (i) tobramycin-treated planktonic P. aeruginosa and (ii) tobramycin-treated P. aeruginosa biofilms on an abiotic surface. Despite the conservation in functions required to form a biofilm, our results show that the responses to tobramycin treatment of biofilms grown on biotic versus abiotic surfaces are different, as exemplified by downregulation of genes involved in Pseudomonas quinolone signal biosynthesis specifically in epithelial cell-grown biofilms versus plastic-grown biofilms. We also identified the gene PA0913, which is upregulated by tobramycin specifically in biofilms grown on CF airway cells and codes for a probable magnesium transporter, MgtE. Mutation of the PA0913 gene increased the bacterial virulence of biofilms on the epithelial cells, consistent with a role for the gene in the suppression of bacterial virulence. Taken together, our data show that analysis of biofilms on airway cells provides new insights into the interaction of these microbial communities with the host.

摘要

铜绿假单胞菌在囊性纤维化(CF)患者的肺部形成生物膜;然而,一直没有用于研究CF肺部生物膜形成的有效模型系统。我们开发了一种组织培养系统,用于在源自CF的人气道细胞上培养铜绿假单胞菌生物膜,该系统促进形成高度耐抗生素的微菌落,这些微菌落产生细胞外多糖基质,并且需要已知的非生物膜形成基因flgK和pilB。用妥布霉素处理铜绿假单胞菌生物膜,通过减少细菌数量和改变毒力基因表达,降低了生物膜的毒力。我们对用妥布霉素处理后的上皮细胞上的这些生物膜进行了微阵列分析,并将这些结果与(i)用妥布霉素处理的浮游铜绿假单胞菌以及(ii)用妥布霉素处理的非生物表面上的铜绿假单胞菌生物膜的基因表达进行了比较。尽管形成生物膜所需的功能具有保守性,但我们的结果表明,在生物表面与非生物表面上生长的生物膜对妥布霉素处理的反应是不同的,例如,参与假单胞菌喹诺酮信号生物合成的基因在上皮细胞生长的生物膜中与塑料生长的生物膜相比有特异性下调。我们还鉴定了基因PA0913,该基因在CF气道细胞上生长的生物膜中被妥布霉素特异性上调,编码一种可能的镁转运蛋白MgtE。PA0913基因突变增加了上皮细胞上生物膜的细菌毒力,这与该基因在抑制细菌毒力中的作用一致。综上所述,我们的数据表明,对气道细胞上生物膜的分析为这些微生物群落与宿主之间的相互作用提供了新的见解。

相似文献

1
In vitro analysis of tobramycin-treated Pseudomonas aeruginosa biofilms on cystic fibrosis-derived airway epithelial cells.
Infect Immun. 2008 Apr;76(4):1423-33. doi: 10.1128/IAI.01373-07. Epub 2008 Jan 22.
3
The DeltaF508-CFTR mutation results in increased biofilm formation by Pseudomonas aeruginosa by increasing iron availability.
Am J Physiol Lung Cell Mol Physiol. 2008 Jul;295(1):L25-37. doi: 10.1152/ajplung.00391.2007. Epub 2008 Mar 21.
5
Antibiotic treatment of Pseudomonas aeruginosa biofilms stimulates expression of the magnesium transporter gene mgtE.
Microbiology (Reading). 2014 Jan;160(Pt 1):165-178. doi: 10.1099/mic.0.070144-0. Epub 2013 Oct 25.
7
8
Dispersal of Epithelium-Associated Pseudomonas aeruginosa Biofilms.
mSphere. 2020 Jul 15;5(4):e00630-20. doi: 10.1128/mSphere.00630-20.
9
Tobramycin and FDA-approved iron chelators eliminate Pseudomonas aeruginosa biofilms on cystic fibrosis cells.
Am J Respir Cell Mol Biol. 2009 Sep;41(3):305-13. doi: 10.1165/rcmb.2008-0299OC. Epub 2009 Jan 23.

引用本文的文献

1
Role of SMF-1 and cbl pili in biofilm formation.
Biofilm. 2025 Jan 20;9:100253. doi: 10.1016/j.bioflm.2025.100253. eCollection 2025 Jun.
2
Establishment and characterization of persistent infections in air-liquid interface cultures of human airway epithelial cells.
Infect Immun. 2025 Mar 11;93(3):e0060324. doi: 10.1128/iai.00603-24. Epub 2025 Feb 18.
3
Antimicrobial and antibiotic-potentiating effect of calcium peroxide nanoparticles on oral bacterial biofilms.
NPJ Biofilms Microbiomes. 2024 Oct 15;10(1):106. doi: 10.1038/s41522-024-00569-7.
4
Modeling Cystic Fibrosis Chronic Infection Using Engineered Mucus-like Hydrogels.
ACS Biomater Sci Eng. 2024 Oct 14;10(10):6558-6568. doi: 10.1021/acsbiomaterials.4c01271. Epub 2024 Sep 19.
5
Nanoparticles in liposomes: a platform for increased antibiotic selectivity in multidrug resistant bacteria in respiratory tract infections.
Drug Deliv Transl Res. 2025 Apr;15(4):1193-1209. doi: 10.1007/s13346-024-01662-2. Epub 2024 Jul 24.
8
Bacterial Outer Membrane Vesicles and Immune Modulation of the Host.
Membranes (Basel). 2023 Aug 24;13(9):752. doi: 10.3390/membranes13090752.
9
Challenges in using transcriptome data to study the c-di-GMP signaling network in clinical isolates.
FEMS Microbes. 2023 Jul 18;4:xtad012. doi: 10.1093/femsmc/xtad012. eCollection 2023.
10
A novel in vitro model to study prolonged Pseudomonas aeruginosa infection in the cystic fibrosis bronchial epithelium.
PLoS One. 2023 Jul 11;18(7):e0288002. doi: 10.1371/journal.pone.0288002. eCollection 2023.

本文引用的文献

1
Opportunistic infections in lung disease: Pseudomonas infections in cystic fibrosis.
Curr Opin Pharmacol. 2007 Jun;7(3):244-51. doi: 10.1016/j.coph.2006.12.005. Epub 2007 Apr 5.
2
Does Pseudomonas aeruginosa use intercellular signalling to build biofilm communities?
Cell Microbiol. 2006 Dec;8(12):1841-9. doi: 10.1111/j.1462-5822.2006.00817.x. Epub 2006 Oct 4.
3
Transcriptional regulation of the Pseudomonas aeruginosa type III secretion system.
Mol Microbiol. 2006 Nov;62(3):631-40. doi: 10.1111/j.1365-2958.2006.05412.x. Epub 2006 Sep 21.
4
Saccharomyces cerevisiae-based molecular tool kit for manipulation of genes from gram-negative bacteria.
Appl Environ Microbiol. 2006 Jul;72(7):5027-36. doi: 10.1128/AEM.00682-06.
5
GlpD and PlsB participate in persister cell formation in Escherichia coli.
J Bacteriol. 2006 Jul;188(14):5136-44. doi: 10.1128/JB.00369-06.
6
Haemophilus influenzae forms biofilms on airway epithelia: implications in cystic fibrosis.
Am J Respir Crit Care Med. 2006 Jul 15;174(2):213-20. doi: 10.1164/rccm.200509-1459OC. Epub 2006 May 4.
8
Keeping their options open: acute versus persistent infections.
J Bacteriol. 2006 Feb;188(4):1211-7. doi: 10.1128/JB.188.4.1211-1217.2006.
9
Biofilms and antimicrobial resistance.
Clin Orthop Relat Res. 2005 Aug(437):41-7. doi: 10.1097/01.blo.0000175714.68624.74.
10
Eradication of early Pseudomonas aeruginosa infection.
J Cyst Fibros. 2005 Aug;4 Suppl 2:49-54. doi: 10.1016/j.jcf.2005.05.018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验