Suppr超能文献

基于支持向量机的全脑解剖磁共振成像对阿尔茨海默病的分类

Support vector machine-based classification of Alzheimer's disease from whole-brain anatomical MRI.

作者信息

Magnin Benoît, Mesrob Lilia, Kinkingnéhun Serge, Pélégrini-Issac Mélanie, Colliot Olivier, Sarazin Marie, Dubois Bruno, Lehéricy Stéphane, Benali Habib

机构信息

UMR-S 678, Inserm, Paris, France.

出版信息

Neuroradiology. 2009 Feb;51(2):73-83. doi: 10.1007/s00234-008-0463-x. Epub 2008 Oct 10.

Abstract

PURPOSE

We present and evaluate a new automated method based on support vector machine (SVM) classification of whole-brain anatomical magnetic resonance imaging to discriminate between patients with Alzheimer's disease (AD) and elderly control subjects.

MATERIALS AND METHODS

We studied 16 patients with AD [mean age +/- standard deviation (SD) = 74.1 +/- 5.2 years, mini-mental score examination (MMSE) = 23.1 +/- 2.9] and 22 elderly controls (72.3 +/- 5.0 years, MMSE = 28.5 +/- 1.3). Three-dimensional T1-weighted MR images of each subject were automatically parcellated into regions of interest (ROIs). Based upon the characteristics of gray matter extracted from each ROI, we used an SVM algorithm to classify the subjects and statistical procedures based on bootstrap resampling to ensure the robustness of the results.

RESULTS

We obtained 94.5% mean correct classification for AD and control subjects (mean specificity, 96.6%; mean sensitivity, 91.5%).

CONCLUSIONS

Our method has the potential in distinguishing patients with AD from elderly controls and therefore may help in the early diagnosis of AD.

摘要

目的

我们提出并评估一种基于支持向量机(SVM)对全脑解剖磁共振成像进行分类的新自动化方法,以区分阿尔茨海默病(AD)患者和老年对照受试者。

材料与方法

我们研究了16例AD患者[平均年龄±标准差(SD)=74.1±5.2岁,简易精神状态检查表(MMSE)=23.1±2.9]和22例老年对照者(72.3±5.0岁,MMSE=28.5±1.3)。将每个受试者的三维T1加权磁共振图像自动分割为感兴趣区域(ROI)。基于从每个ROI中提取的灰质特征,我们使用SVM算法对受试者进行分类,并基于自助重采样的统计程序来确保结果的稳健性。

结果

我们对AD患者和对照受试者的平均正确分类率为94.5%(平均特异性为96.6%;平均敏感性为91.5%)。

结论

我们的方法有潜力区分AD患者和老年对照者,因此可能有助于AD的早期诊断。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验