Andrews Katherine T, Tran Thanh N, Wheatley Nicole C, Fairlie David P
Eskitis Institute for Cell and Molecular Therapies, Griffith University, Nathan, QLD 4111, Australia.
Curr Top Med Chem. 2009;9(3):292-308. doi: 10.2174/156802609788085313.
It is now clear that histone acetylation plays key roles in regulating gene transcription in both eukaryotes and prokaryotes, the acetylated form inducing gene expression while deacetylation silences genes. Recent studies have identified roles for histone acetyltransferases (HATs) and/or histone deacetylases (HDACs) in a number of parasites including Entamoeba histolytica, Toxoplasma gondii, Schistosoma mansoni, Cryptosporidium sp., Leishmania donovani, Neospora caninum, and Plasmodium falciparum. Here we survey fairly limited efforts to date in profiling antimalarial activities of HDAC inhibitors, showing that such compounds are potent inhibitors of the growth of P. falciparum in vitro and in vivo. Most of the compounds evaluated so far have borne a zinc-binding hydroxamate group that tends to be metabolized in vivo, and thus new zinc-binding groups need to be incorporated into second generation inhibitors in order to mask the catalytic zinc in the active site of HDACs. Also the development of compounds that are selective for parasitic HDACs over mammalian HDACs is still in relative infancy and it will take some time to derive antiparasitic HDAC inhibitor compounds with minimal toxicity for the host and acceptable pharmacokinetic and pharmacodynamic profiles for human treatment. Nevertheless, results to date suggest that HDAC inhibitor development represents a promising new approach to the potential treatment of parasitic infections, including those induced by malaria protozoa, and may offer new therapeutic targets within increasingly drug-resistant malarial parasites.
现在已经清楚,组蛋白乙酰化在真核生物和原核生物的基因转录调控中都起着关键作用,乙酰化形式诱导基因表达,而去乙酰化则使基因沉默。最近的研究已经确定组蛋白乙酰转移酶(HATs)和/或组蛋白去乙酰化酶(HDACs)在包括溶组织内阿米巴、刚地弓形虫、曼氏血吸虫、隐孢子虫、杜氏利什曼原虫、犬新孢子虫和恶性疟原虫在内的多种寄生虫中发挥作用。在此,我们综述了迄今为止在分析HDAC抑制剂抗疟活性方面相当有限的研究工作,结果表明这类化合物在体外和体内都是恶性疟原虫生长的有效抑制剂。到目前为止评估的大多数化合物都带有一个锌结合异羟肟酸基团,该基团在体内易于代谢,因此需要将新的锌结合基团引入第二代抑制剂中,以掩盖HDAC活性位点中的催化锌。而且,开发对寄生性HDAC比对哺乳动物HDAC具有选择性的化合物仍处于相对初期阶段,要获得对宿主毒性最小且具有适合人类治疗的可接受药代动力学和药效学特征的抗寄生虫HDAC抑制剂化合物还需要一些时间。尽管如此,迄今为止的结果表明,HDAC抑制剂的开发代表了一种有前景的新方法,可用于潜在治疗包括疟原虫引起的感染在内的寄生虫感染,并且可能在耐药性日益增强的疟原虫中提供新的治疗靶点。