Center for Cell Signaling and Department of Microbiology, University of Virginia School of Medicine, Box 800577-MSB7225, Charlottesville, Virginia 22908, United States.
Biochemistry. 2011 Aug 2;50(30):6567-78. doi: 10.1021/bi200553e. Epub 2011 Jul 8.
Pin1 is a prolyl isomerase that recognizes phosphorylated Ser/Thr-Pro sites, and phosphatase inhibitor-2 (I-2) is phosphorylated during mitosis at a PSpTP site that is expected to be a Pin1 substrate. However, we previously discovered I-2, but not phospho-I-2, bound to Pin1 as an allosteric modifier of Pin1 substrate specificity [Li, M., et al. (2008) Biochemistry 47, 292]. Here, we use binding assays and NMR spectroscopy to map the interactions on Pin1 and I-2 to elucidate the organization of this complex. Despite having sequences that are ∼50% identical, human, Xenopus, and Drosophila I-2 proteins all exhibited identical, saturable binding to GST-Pin1 with K(0.5) values of 0.3 μM. The (1)H-(15)N heteronuclear single-quantum coherence spectra for both the WW domain and isomerase domain of Pin1 showed distinctive shifts upon addition of I-2. Conversely, as shown by NMR spectroscopy, specific regions of I-2 were affected by addition of Pin1. A single-residue I68A substitution in I-2 weakened binding to Pin1 by half and essentially eliminated binding to the isolated WW domain. On the other hand, truncation of I-2 to residue 152 had a minimal effect on binding to the WW domain but eliminated binding to the isomerase domain. Size exclusion chromatography revealed that wild-type I-2 and Pin1 formed a large (>300 kDa) complex and I-2(I68A) formed a complex of half the size that we propose are a heterotetramer and a heterodimer, respectively. Pin1 and I-2 are conserved among eukaryotes from yeast to humans, and we propose they make up an ancient partnership that provides a means for regulating Pin1 specificity and function.
Pin1 是一种脯氨酰异构酶,可识别磷酸化的 Ser/Thr-Pro 位点,磷酸酶抑制剂-2(I-2)在有丝分裂期间在 PSpTP 位点被磷酸化,该位点预计是 Pin1 的底物。然而,我们之前发现 I-2 而不是磷酸化的 I-2 作为 Pin1 底物特异性的别构调节剂与 Pin1 结合[Li, M., et al. (2008) Biochemistry 47, 292]。在这里,我们使用结合测定和 NMR 光谱学来绘制 Pin1 和 I-2 上的相互作用,以阐明该复合物的结构。尽管具有约 50%相同的序列,但人类、非洲爪蟾和果蝇 I-2 蛋白都以 0.3 μM 的 K0.5 值表现出对 GST-Pin1 的相同、饱和结合。Pin1 的 WW 结构域和异构酶结构域的 (1)H-(15)N 异核单量子相干光谱在加入 I-2 后都显示出独特的位移。相反,如 NMR 光谱所示,I-2 的特定区域受 Pin1 加入的影响。I-2 中的单个残基 I68A 取代使结合 Pin1 的能力降低一半,并基本上消除了与分离的 WW 结构域的结合。另一方面,将 I-2 截断至残基 152 对与 WW 结构域的结合几乎没有影响,但消除了与异构酶结构域的结合。分子筛层析表明,野生型 I-2 和 Pin1 形成了一个大于 300 kDa 的大复合物,而 I-2(I68A)形成的复合物大小减半,我们分别提出它们是一个异四聚体和一个异二聚体。Pin1 和 I-2 在从酵母到人等真核生物中是保守的,我们提出它们构成了一个古老的伙伴关系,为调节 Pin1 的特异性和功能提供了一种手段。