Suppr超能文献

磷酸化依赖性脯氨酰顺反异构酶Pin1的分子机制

Molecular mechanisms of the phospho-dependent prolyl cis/trans isomerase Pin1.

作者信息

Lippens G, Landrieu I, Smet C

机构信息

CNRS UMR 8576 Unité de Glycobiologie Structurale et Fonctionnelle, Université des Sciences et Technologies de Lille 1-59655, Villeneuve d'Ascq, France.

出版信息

FEBS J. 2007 Oct;274(20):5211-22. doi: 10.1111/j.1742-4658.2007.06057.x. Epub 2007 Sep 24.

Abstract

Since its discovery 10 years ago, Pin1, a prolyl cis/trans isomerase essential for cell cycle progression, has been implicated in a large number of molecular processes related to human diseases, including cancer and Alzheimer's disease. Pin1 is made up of a WW interaction domain and a C-terminal catalytic subunit, and several high-resolution structures are available that have helped define its function. The enzymatic activity of Pin1 towards short peptides containing the pSer/Thr-Pro motif has been well documented, and we discuss the available evidence for the molecular mechanisms of its isomerase activity. We further focus on those studies that examine its cis/trans isomerase function using full-length protein substrates. The interpretation of this research has been further complicated by the observation that many of its pSer/Thr-Pro substrate motifs are located in natively unstructured regions of polypeptides, and are characterized by minor populations of the cis conformer. Finally, we review the data on the possibility of alternative modes of substrate binding and the complex role that Pin1 plays in the degradation of its substrates. After considering the available work, it seems that further analysis is required to determine whether binding or catalysis is the primary mechanism through which Pin1 affects cell cycle progression.

摘要

自10年前被发现以来,Pin1作为一种对细胞周期进程至关重要的脯氨酰顺/反异构酶,已被证明与大量人类疾病相关的分子过程有关,包括癌症和阿尔茨海默病。Pin1由一个WW相互作用结构域和一个C端催化亚基组成,已有多个高分辨率结构可用于帮助确定其功能。Pin1对含pSer/Thr-Pro基序的短肽的酶活性已有充分记录,我们将讨论其异构酶活性分子机制的现有证据。我们进一步关注那些使用全长蛋白质底物研究其顺/反异构酶功能的研究。由于观察到其许多pSer/Thr-Pro底物基序位于多肽的天然无结构区域,且以顺式构象的少量群体为特征,这项研究的解释变得更加复杂。最后,我们回顾了关于底物结合替代模式的可能性以及Pin1在其底物降解中所起复杂作用的数据。在考虑现有工作之后,似乎需要进一步分析以确定结合或催化是否是Pin1影响细胞周期进程的主要机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验