Suppr超能文献

尿激酶受体功能的构象调节:受体占据和表位映射单克隆抗体对片状伪足诱导的影响。

Conformational regulation of urokinase receptor function: impact of receptor occupancy and epitope-mapped monoclonal antibodies on lamellipodia induction.

机构信息

Finsen Laboratory, Rigshospitalet Section 3735, Copenhagen Biocenter, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark.

出版信息

J Biol Chem. 2011 Sep 23;286(38):33544-56. doi: 10.1074/jbc.M111.220087. Epub 2011 Jul 28.

Abstract

The urokinase-type plasminogen activator receptor (uPAR) is a glycolipid-anchored membrane protein with an established role in focalizing uPA-mediated plasminogen activation on cell surfaces. Distinct from this function, uPAR also modulates cell adhesion and migration on vitronectin-rich matrices. Although uPA and vitronectin engage structurally distinct binding sites on uPAR, they nonetheless cooperate functionally, as uPA binding potentiates uPAR-dependent induction of lamellipodia on vitronectin matrices. We now present data advancing the possibility that it is the burial of the β-hairpin in uPA per se into the hydrophobic ligand binding cavity of uPAR that modulates the function of this receptor. Based on these data, we now propose a model in which the inherent interdomain mobility in uPAR plays a major role in modulating its function. Particularly one uPAR conformation, which is stabilized by engagement of the β-hairpin in uPA, favors the proper assembly of an active, compact receptor structure that stimulates lamellipodia induction on vitronectin. This molecular model has wide implications for drug development targeting uPAR function.

摘要

尿激酶型纤溶酶原激活物受体 (uPAR) 是一种糖脂锚定的膜蛋白,在集中 uPA 介导的纤溶酶原激活方面发挥着既定作用细胞表面。与该功能不同,uPAR 还调节富含 vitronectin 的基质上的细胞粘附和迁移。尽管 uPA 和 vitronectin 在 uPAR 上结合结构上不同的结合位点,但它们在功能上合作,因为 uPA 结合增强了 uPAR 依赖性诱导 vitronectin 基质上的片状伪足。我们现在提供的数据推进了这样一种可能性,即 uPA 本身将 β-发夹埋入 uPAR 的疏水性配体结合腔中,从而调节该受体的功能。基于这些数据,我们现在提出了一个模型,其中 uPAR 中的固有域间流动性在调节其功能方面起着主要作用。特别是一种 uPAR 构象,通过 uPA 中的 β-发夹的结合而稳定,有利于刺激 vitronectin 上片状伪足诱导的活性、紧凑的受体结构的适当组装。该分子模型对靶向 uPAR 功能的药物开发具有广泛的影响。

相似文献

2
Stabilizing a flexible interdomain hinge region harboring the SMB binding site drives uPAR into its closed conformation.
J Mol Biol. 2015 Mar 27;427(6 Pt B):1389-1403. doi: 10.1016/j.jmb.2015.01.022. Epub 2015 Feb 7.
4
Sequences within domain II of the urokinase receptor critical for differential ligand recognition.
J Biol Chem. 2003 Aug 8;278(32):29925-32. doi: 10.1074/jbc.M300751200. Epub 2003 May 20.
5
Discrimination of different forms of the murine urokinase plasminogen activator receptor on the cell surface using monoclonal antibodies.
J Immunol Methods. 2008 Nov 30;339(1):55-65. doi: 10.1016/j.jim.2008.08.002. Epub 2008 Aug 30.
7
Ligand binding regions in the receptor for urokinase-type plasminogen activator.
J Biol Chem. 2001 Aug 3;276(31):28946-53. doi: 10.1074/jbc.m011347200.
8
Ab initio molecular orbital calculations on specific interactions between urokinase-type plasminogen activator and its receptor.
J Mol Graph Model. 2009 Aug;28(1):46-53. doi: 10.1016/j.jmgm.2009.04.001. Epub 2009 Apr 9.

引用本文的文献

2
Optimization and Evaluation of AlF Labeling Using a NOTA-or RESCA1-Conjugated AE105 Peptide Antagonist of uPAR.
Front Nucl Med. 2021 Dec 13;1:799533. doi: 10.3389/fnume.2021.799533. eCollection 2021.
4
Targeted imaging of uPAR expression in vivo with cyclic AE105 variants.
Sci Rep. 2023 Oct 11;13(1):17248. doi: 10.1038/s41598-023-43934-w.
5
Crystal structure and cellular functions of uPAR dimer.
Nat Commun. 2022 Mar 29;13(1):1665. doi: 10.1038/s41467-022-29344-y.
6
Therapeutic Strategies Targeting Urokinase and Its Receptor in Cancer.
Cancers (Basel). 2022 Jan 19;14(3):498. doi: 10.3390/cancers14030498.
7
10
Development of AE147 Peptide-Conjugated Nanocarriers for Targeting uPAR-Overexpressing Cancer Cells.
Int J Nanomedicine. 2021 Aug 12;16:5437-5449. doi: 10.2147/IJN.S315619. eCollection 2021.

本文引用的文献

1
Rational targeting of the urokinase receptor (uPAR): development of antagonists and non-invasive imaging probes.
Curr Drug Targets. 2011 Nov;12(12):1711-28. doi: 10.2174/138945011797635812.
3
Regulation of cell signalling by uPAR.
Nat Rev Mol Cell Biol. 2010 Jan;11(1):23-36. doi: 10.1038/nrm2821.
4
The extracellular matrix in development and morphogenesis: a dynamic view.
Dev Biol. 2010 May 1;341(1):126-40. doi: 10.1016/j.ydbio.2009.10.026. Epub 2009 Oct 23.
5
Collective cell migration in morphogenesis, regeneration and cancer.
Nat Rev Mol Cell Biol. 2009 Jul;10(7):445-57. doi: 10.1038/nrm2720.
6
Proteolytic interstitial cell migration: a five-step process.
Cancer Metastasis Rev. 2009 Jun;28(1-2):129-35. doi: 10.1007/s10555-008-9174-3.
8
The three-fingered protein domain of the human genome.
Cell Mol Life Sci. 2008 Nov;65(21):3481-93. doi: 10.1007/s00018-008-8473-8.
9
Structure and ligand interactions of the urokinase receptor (uPAR).
Front Biosci. 2008 May 1;13:5441-61. doi: 10.2741/3092.
10
Crystal structures of two human vitronectin, urokinase and urokinase receptor complexes.
Nat Struct Mol Biol. 2008 Apr;15(4):422-3. doi: 10.1038/nsmb.1404. Epub 2008 Mar 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验