Suppr超能文献

大肠杆菌 RsmG 甲基转移酶表达和催化活性的调控。

Regulation of expression and catalytic activity of Escherichia coli RsmG methyltransferase.

机构信息

Laboratorio de Genética Molecular, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain.

出版信息

RNA. 2012 Apr;18(4):795-806. doi: 10.1261/rna.029868.111. Epub 2012 Feb 15.

Abstract

RsmG is an AdoMet-dependent methyltransferase responsible for the synthesis of m(7)G527 in the 530 loop of bacterial 16S rRNA. This loop is universally conserved, plays a key role in ribosomal accuracy, and is a target for streptomycin binding. Loss of the m(7)G527 modification confers low-level streptomycin resistance and may affect ribosomal functioning. Here, we explore the mechanisms controlling RsmG expression and activity, which may somehow respond to the demand set by the amount of rRNA. We confirm that rsmG is the second member in a bicistronic operon and demonstrate that rsmG also has its own promoter, which appears, in actively growing cells, as a control device to offset both the relatively low stability of RsmG and inhibition of the operon promoter. RsmG levels decrease under conditions that down-regulate rRNA synthesis. However, coordination between rRNA and RsmG expression does not seem to occur at the level of transcription initiation. Instead, it might depend on the activity of an inverted repeated region, located between the rsmG promoter and ribosome binding site, which we show to work as a weak transcriptional terminator. To gain insights into the enzymatic mechanism of RsmG, highly conserved residues were mutated and the abilities of the resulting proteins to confer streptomycin resistance, to modify rRNA, and to bind AdoMet were explored. Our data demonstrate for the first time the critical importance of some residues located in the active site of Escherichia coli RsmG for the m(7)G modification process and suggest a role for them in rRNA binding and catalysis.

摘要

RsmG 是一种依赖 AdoMet 的甲基转移酶,负责合成细菌 16S rRNA 中 530 环中的 m(7)G527。这个环是普遍保守的,在核糖体准确性中起着关键作用,也是链霉素结合的靶点。失去 m(7)G527 修饰会赋予低水平的链霉素抗性,并可能影响核糖体的功能。在这里,我们探索了控制 RsmG 表达和活性的机制,这些机制可能会以某种方式响应 rRNA 数量所设定的需求。我们证实 rsmG 是双顺反子操纵子的第二个成员,并证明 rsmG 也有自己的启动子,在活性生长的细胞中,它作为一个控制装置,以抵消 RsmG 的相对低稳定性和操纵子启动子的抑制作用。在下调 rRNA 合成的条件下,RsmG 水平下降。然而,rRNA 和 RsmG 表达之间的协调似乎不是在转录起始水平上发生的。相反,它可能依赖于位于 rsmG 启动子和核糖体结合位点之间的反向重复区域的活性,我们证明该区域作为一个弱转录终止子起作用。为了深入了解 RsmG 的酶促机制,我们突变了高度保守的残基,并研究了由此产生的蛋白质赋予链霉素抗性、修饰 rRNA 和结合 AdoMet 的能力。我们的数据首次证明了位于大肠杆菌 RsmG 活性位点的一些残基对 m(7)G 修饰过程的重要性,并暗示它们在 rRNA 结合和催化中起作用。

相似文献

1
Regulation of expression and catalytic activity of Escherichia coli RsmG methyltransferase.
RNA. 2012 Apr;18(4):795-806. doi: 10.1261/rna.029868.111. Epub 2012 Feb 15.
5
Structural and functional studies of the Thermus thermophilus 16S rRNA methyltransferase RsmG.
RNA. 2009 Sep;15(9):1693-704. doi: 10.1261/rna.1652709. Epub 2009 Jul 21.
6
RsmG forms stable complexes with premature small subunit rRNA during bacterial ribosome biogenesis.
RSC Adv. 2020 Jun 11;10(38):22361-22369. doi: 10.1039/d0ra02732d. eCollection 2020 Jun 10.
7
Loss of a conserved 7-methylguanosine modification in 16S rRNA confers low-level streptomycin resistance in bacteria.
Mol Microbiol. 2007 Feb;63(4):1096-106. doi: 10.1111/j.1365-2958.2006.05585.x.
8
Inactivation of KsgA, a 16S rRNA methyltransferase, causes vigorous emergence of mutants with high-level kasugamycin resistance.
Antimicrob Agents Chemother. 2009 Jan;53(1):193-201. doi: 10.1128/AAC.00873-08. Epub 2008 Nov 10.
9
Insights into the catalytic mechanism of 16S rRNA methyltransferase RsmE (m³U1498) from crystal and solution structures.
J Mol Biol. 2012 Nov 2;423(4):576-89. doi: 10.1016/j.jmb.2012.08.016. Epub 2012 Aug 25.
10
Loss of U1498 methylation in 16S rRNA by RsmE methyltransferase associates its role with aminoglycoside resistance in mycobacteria.
J Glob Antimicrob Resist. 2020 Dec;23:359-369. doi: 10.1016/j.jgar.2020.10.006. Epub 2020 Nov 10.

引用本文的文献

1
Interactions between host epithelial cells and promote the emergence of highly antibiotic resistant and highly mucoid strains.
Emerg Microbes Infect. 2022 Dec;11(1):2556-2569. doi: 10.1080/22221751.2022.2136534.
2
Engineering sigma factors and chaperones for enhanced heterologous lipoxygenase production in Escherichia coli.
Biotechnol Biofuels Bioprod. 2022 Oct 10;15(1):105. doi: 10.1186/s13068-022-02206-x.
3
Adaptive Strategies of the Candidate Probiotic E. coli Nissle in the Mammalian Gut.
Cell Host Microbe. 2019 Apr 10;25(4):499-512.e8. doi: 10.1016/j.chom.2019.02.005. Epub 2019 Mar 26.
4
Dual Transcriptomics of Host-Pathogen Interaction of Cystic Fibrosis Isolate PASS1 With Zebrafish.
Front Cell Infect Microbiol. 2018 Nov 22;8:406. doi: 10.3389/fcimb.2018.00406. eCollection 2018.
5
Pangenome-wide and molecular evolution analyses of the Pseudomonas aeruginosa species.
BMC Genomics. 2016 Jan 12;17:45. doi: 10.1186/s12864-016-2364-4.
8
Characterization of a cross-linked protein-nucleic acid substrate radical in the reaction catalyzed by RlmN.
J Am Chem Soc. 2014 Jun 11;136(23):8221-8. doi: 10.1021/ja410560p. Epub 2014 Jun 2.

本文引用的文献

1
A practical guide for the computational selection of residues to be experimentally characterized in protein families.
Brief Bioinform. 2012 May;13(3):329-36. doi: 10.1093/bib/bbr052. Epub 2011 Sep 19.
2
Growth rate regulation in Escherichia coli.
FEMS Microbiol Rev. 2012 Mar;36(2):269-87. doi: 10.1111/j.1574-6976.2011.00279.x. Epub 2011 Jun 3.
3
Mutations in gidB confer low-level streptomycin resistance in Mycobacterium tuberculosis.
Antimicrob Agents Chemother. 2011 Jun;55(6):2515-22. doi: 10.1128/AAC.01814-10. Epub 2011 Mar 28.
6
The Universal Protein Resource (UniProt) in 2010.
Nucleic Acids Res. 2010 Jan;38(Database issue):D142-8. doi: 10.1093/nar/gkp846. Epub 2009 Oct 20.
8
Structural and functional studies of the Thermus thermophilus 16S rRNA methyltransferase RsmG.
RNA. 2009 Sep;15(9):1693-704. doi: 10.1261/rna.1652709. Epub 2009 Jul 21.
9
Increased RNA polymerase availability directs resources towards growth at the expense of maintenance.
EMBO J. 2009 Aug 5;28(15):2209-19. doi: 10.1038/emboj.2009.181. Epub 2009 Jul 2.
10
Inactivation of KsgA, a 16S rRNA methyltransferase, causes vigorous emergence of mutants with high-level kasugamycin resistance.
Antimicrob Agents Chemother. 2009 Jan;53(1):193-201. doi: 10.1128/AAC.00873-08. Epub 2008 Nov 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验