Metabolism and Cancer Susceptibility Section, Basic Research Laboratory, National Cancer Institute, Frederick, MD 21702, USA.
Proc Natl Acad Sci U S A. 2012 Jun 5;109(23):8983-8. doi: 10.1073/pnas.1203244109. Epub 2012 May 21.
In addition to glycolysis, the oncogenic transcription factor c-MYC (MYC) stimulates glutamine catabolism to fuel growth and proliferation of cancer cells through up-regulating glutaminase (GLS). Glutamine is converted to glutamate by GLS, entering the tricarboxylic acid cycle as an important energy source. Less well-recognized, glutamate can also be converted to proline through Δ(1)-pyrroline-5-carboxylate (P5C) and vice versa. This study suggests that some MYC-induced cellular effects are due to MYC regulation of proline metabolism. Proline oxidase, also known as proline dehydrogenase (POX/PRODH), the first enzyme in proline catabolism, is a mitochondrial tumor suppressor that inhibits proliferation and induces apoptosis. MiR-23b* mediates POX/PRODH down-regulation in human kidney tumors. MiR-23b* is processed from the same transcript as miR-23b; the latter inhibits the translation of GLS. Using MYC-inducible human Burkitt lymphoma model P493 and PC3 human prostate cancer cells, we showed that MYC suppressed POX/PRODH expression primarily through up-regulating miR-23b*. The growth inhibition in the absence of MYC was partially reversed by POX/PRODH knockdown, indicating the importance of suppression of POX/PRODH in MYC-mediated cellular effects. Interestingly, MYC not only inhibited POX/PRODH, but also markedly increased the enzymes of proline biosynthesis from glutamine, including P5C synthase and P5C reductase 1. MYC-induced proline biosynthesis from glutamine was directly confirmed using (13)C,(15)N-glutamine as a tracer. The metabolic link between glutamine and proline afforded by MYC emphasizes the complexity of tumor metabolism. Further studies of the relationship between glutamine and proline metabolism should provide a deeper understanding of tumor metabolism while enabling the development of novel therapeutic strategies.
除了糖酵解外,致癌转录因子 c-MYC(MYC)还通过上调谷氨酰胺酶(GLS)来刺激谷氨酰胺分解,为癌细胞的生长和增殖提供燃料。GLS 将谷氨酰胺转化为谷氨酸,进入三羧酸循环作为重要的能量来源。不太为人所知的是,谷氨酸也可以通过 Δ(1)-吡咯啉-5-羧酸(P5C)转化为脯氨酸,反之亦然。这项研究表明,一些 MYC 诱导的细胞效应是由于 MYC 调节脯氨酸代谢。脯氨酸氧化酶,也称为脯氨酸脱氢酶(POX/PRODH),是脯氨酸分解代谢的第一酶,是一种线粒体肿瘤抑制因子,可抑制增殖并诱导细胞凋亡。miR-23b介导人肾肿瘤中 POX/PRODH 的下调。miR-23b与 miR-23b 来自同一转录本;后者抑制 GLS 的翻译。使用 MYC 诱导的人 Burkitt 淋巴瘤模型 P493 和 PC3 人前列腺癌细胞,我们表明 MYC 主要通过上调 miR-23b*来抑制 POX/PRODH 表达。在没有 MYC 的情况下,生长抑制作用部分被 POX/PRODH 敲低逆转,表明抑制 POX/PRODH 在 MYC 介导的细胞效应中的重要性。有趣的是,MYC 不仅抑制 POX/PRODH,还显著增加了来自谷氨酰胺的脯氨酸生物合成酶,包括 P5C 合酶和 P5C 还原酶 1。使用 (13)C,(15)N-谷氨酰胺作为示踪剂直接证实了 MYC 诱导的来自谷氨酰胺的脯氨酸生物合成。MYC 提供的谷氨酰胺和脯氨酸代谢之间的代谢联系强调了肿瘤代谢的复杂性。进一步研究谷氨酰胺和脯氨酸代谢之间的关系,应该能够更深入地了解肿瘤代谢,并为开发新的治疗策略提供依据。