Suppr超能文献

原氨酸和谷氨酰胺代谢的重编程有助于致癌转录因子 c-MYC 调控的增殖和代谢反应。

Reprogramming of proline and glutamine metabolism contributes to the proliferative and metabolic responses regulated by oncogenic transcription factor c-MYC.

机构信息

Metabolism and Cancer Susceptibility Section, Basic Research Laboratory, National Cancer Institute, Frederick, MD 21702, USA.

出版信息

Proc Natl Acad Sci U S A. 2012 Jun 5;109(23):8983-8. doi: 10.1073/pnas.1203244109. Epub 2012 May 21.

Abstract

In addition to glycolysis, the oncogenic transcription factor c-MYC (MYC) stimulates glutamine catabolism to fuel growth and proliferation of cancer cells through up-regulating glutaminase (GLS). Glutamine is converted to glutamate by GLS, entering the tricarboxylic acid cycle as an important energy source. Less well-recognized, glutamate can also be converted to proline through Δ(1)-pyrroline-5-carboxylate (P5C) and vice versa. This study suggests that some MYC-induced cellular effects are due to MYC regulation of proline metabolism. Proline oxidase, also known as proline dehydrogenase (POX/PRODH), the first enzyme in proline catabolism, is a mitochondrial tumor suppressor that inhibits proliferation and induces apoptosis. MiR-23b* mediates POX/PRODH down-regulation in human kidney tumors. MiR-23b* is processed from the same transcript as miR-23b; the latter inhibits the translation of GLS. Using MYC-inducible human Burkitt lymphoma model P493 and PC3 human prostate cancer cells, we showed that MYC suppressed POX/PRODH expression primarily through up-regulating miR-23b*. The growth inhibition in the absence of MYC was partially reversed by POX/PRODH knockdown, indicating the importance of suppression of POX/PRODH in MYC-mediated cellular effects. Interestingly, MYC not only inhibited POX/PRODH, but also markedly increased the enzymes of proline biosynthesis from glutamine, including P5C synthase and P5C reductase 1. MYC-induced proline biosynthesis from glutamine was directly confirmed using (13)C,(15)N-glutamine as a tracer. The metabolic link between glutamine and proline afforded by MYC emphasizes the complexity of tumor metabolism. Further studies of the relationship between glutamine and proline metabolism should provide a deeper understanding of tumor metabolism while enabling the development of novel therapeutic strategies.

摘要

除了糖酵解外,致癌转录因子 c-MYC(MYC)还通过上调谷氨酰胺酶(GLS)来刺激谷氨酰胺分解,为癌细胞的生长和增殖提供燃料。GLS 将谷氨酰胺转化为谷氨酸,进入三羧酸循环作为重要的能量来源。不太为人所知的是,谷氨酸也可以通过 Δ(1)-吡咯啉-5-羧酸(P5C)转化为脯氨酸,反之亦然。这项研究表明,一些 MYC 诱导的细胞效应是由于 MYC 调节脯氨酸代谢。脯氨酸氧化酶,也称为脯氨酸脱氢酶(POX/PRODH),是脯氨酸分解代谢的第一酶,是一种线粒体肿瘤抑制因子,可抑制增殖并诱导细胞凋亡。miR-23b介导人肾肿瘤中 POX/PRODH 的下调。miR-23b与 miR-23b 来自同一转录本;后者抑制 GLS 的翻译。使用 MYC 诱导的人 Burkitt 淋巴瘤模型 P493 和 PC3 人前列腺癌细胞,我们表明 MYC 主要通过上调 miR-23b*来抑制 POX/PRODH 表达。在没有 MYC 的情况下,生长抑制作用部分被 POX/PRODH 敲低逆转,表明抑制 POX/PRODH 在 MYC 介导的细胞效应中的重要性。有趣的是,MYC 不仅抑制 POX/PRODH,还显著增加了来自谷氨酰胺的脯氨酸生物合成酶,包括 P5C 合酶和 P5C 还原酶 1。使用 (13)C,(15)N-谷氨酰胺作为示踪剂直接证实了 MYC 诱导的来自谷氨酰胺的脯氨酸生物合成。MYC 提供的谷氨酰胺和脯氨酸代谢之间的代谢联系强调了肿瘤代谢的复杂性。进一步研究谷氨酰胺和脯氨酸代谢之间的关系,应该能够更深入地了解肿瘤代谢,并为开发新的治疗策略提供依据。

相似文献

2
Proline dehydrogenase (oxidase) in cancer.
Biofactors. 2012 Nov-Dec;38(6):398-406. doi: 10.1002/biof.1036. Epub 2012 Aug 8.
4
Collagen metabolism as a regulator of proline dehydrogenase/proline oxidase-dependent apoptosis/autophagy.
Amino Acids. 2021 Dec;53(12):1917-1925. doi: 10.1007/s00726-021-02968-y. Epub 2021 Apr 5.
5
Oncogenic human herpesvirus hijacks proline metabolism for tumorigenesis.
Proc Natl Acad Sci U S A. 2020 Apr 7;117(14):8083-8093. doi: 10.1073/pnas.1918607117. Epub 2020 Mar 25.
6
Unraveling delta1-pyrroline-5-carboxylate-proline cycle in plants by uncoupled expression of proline oxidation enzymes.
J Biol Chem. 2009 Sep 25;284(39):26482-92. doi: 10.1074/jbc.M109.009340. Epub 2009 Jul 27.
7
The Proline Cycle As a Potential Cancer Therapy Target.
Biochemistry. 2018 Jun 26;57(25):3433-3444. doi: 10.1021/acs.biochem.8b00215. Epub 2018 Apr 23.
9
Proline dehydrogenase contributes to pathogen defense in Arabidopsis.
Plant Physiol. 2011 Apr;155(4):1947-59. doi: 10.1104/pp.110.167163. Epub 2011 Feb 10.

引用本文的文献

1
The key enzyme PYCR1 in proline metabolism: a dual driver of cancer progression and fibrotic remodeling.
J Enzyme Inhib Med Chem. 2025 Dec;40(1):2545620. doi: 10.1080/14756366.2025.2545620. Epub 2025 Sep 2.
2
Imaging the uptake and metabolism of glutamine in prostate tumor models using CEST MRI.
Npj Imaging. 2025 Aug 1;3(1):34. doi: 10.1038/s44303-025-00100-3.
3
Metabolic Adaptations in Cancer Progression: Optimization Strategies and Therapeutic Targets.
Cancers (Basel). 2025 Jul 15;17(14):2341. doi: 10.3390/cancers17142341.
4
Glutamine Metabolism: Molecular Regulation, Biological Functions, and Diseases.
MedComm (2020). 2025 Jun 25;6(7):e70120. doi: 10.1002/mco2.70120. eCollection 2025 Jul.
5
Targeting amino acid in tumor therapy.
Front Oncol. 2025 Jun 4;15:1582116. doi: 10.3389/fonc.2025.1582116. eCollection 2025.
6
The new insight into the role of hydroxyproline in metabolism of cancer cells.
Front Cell Dev Biol. 2025 May 16;13:1556770. doi: 10.3389/fcell.2025.1556770. eCollection 2025.
7
Radiation-induced changes in salivary metabolite profile and pathways in head and neck cancer patients.
Clin Oral Investig. 2025 Feb 21;29(3):145. doi: 10.1007/s00784-025-06225-4.
9
Targeting pivotal amino acids metabolism for treatment of leukemia.
Heliyon. 2024 Nov 16;10(23):e40492. doi: 10.1016/j.heliyon.2024.e40492. eCollection 2024 Dec 15.
10
Metabolic modelling links Warburg effect to collagen formation, angiogenesis and inflammation in the tumoral stroma.
PLoS One. 2024 Dec 3;19(12):e0313962. doi: 10.1371/journal.pone.0313962. eCollection 2024.

本文引用的文献

1
Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells.
Cell Metab. 2012 Jan 4;15(1):110-21. doi: 10.1016/j.cmet.2011.12.009.
2
The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation.
Immunity. 2011 Dec 23;35(6):871-82. doi: 10.1016/j.immuni.2011.09.021.
3
Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of α-ketoglutarate to citrate to support cell growth and viability.
Proc Natl Acad Sci U S A. 2011 Dec 6;108(49):19611-6. doi: 10.1073/pnas.1117773108. Epub 2011 Nov 21.
4
Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia.
Nature. 2011 Nov 20;481(7381):380-4. doi: 10.1038/nature10602.
5
Reductive carboxylation supports growth in tumour cells with defective mitochondria.
Nature. 2011 Nov 20;481(7381):385-8. doi: 10.1038/nature10642.
6
Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis.
Nature. 2011 Jul 6;475(7354):106-9. doi: 10.1038/nature10189.
7
Stable isotope resolved metabolomics of lung cancer in a SCID mouse model.
Metabolomics. 2011 Jun 1;7(2):257-269. doi: 10.1007/s11306-010-0249-0.
8
Cancer-stromal interactions: role in cell survival, metabolism and drug sensitivity.
Cancer Biol Ther. 2011 Jan 15;11(2):150-6. doi: 10.4161/cbt.11.2.14623.
10
miR-23b targets proline oxidase, a novel tumor suppressor protein in renal cancer.
Oncogene. 2010 Sep 2;29(35):4914-24. doi: 10.1038/onc.2010.237. Epub 2010 Jun 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验