Suppr超能文献

通过脯氨酸氧化酶的解偶联表达解析植物中的δ1-吡咯啉-5-羧酸-脯氨酸循环

Unraveling delta1-pyrroline-5-carboxylate-proline cycle in plants by uncoupled expression of proline oxidation enzymes.

作者信息

Miller Gad, Honig Arik, Stein Hanan, Suzuki Nobuhiro, Mittler Ron, Zilberstein Aviah

机构信息

Department of Plant Science, Tel Aviv University, Tel-Aviv 69978, Israel.

出版信息

J Biol Chem. 2009 Sep 25;284(39):26482-92. doi: 10.1074/jbc.M109.009340. Epub 2009 Jul 27.

Abstract

The two-step oxidation of proline in all eukaryotes is performed at the inner mitochondrial membrane by the consecutive action of proline dehydrogenase (ProDH) that produces Delta(1)-pyrroline-5-carboxylate (P5C) and P5C dehydrogenase (P5CDH) that oxidizes P5C to glutamate. This catabolic route is down-regulated in plants during osmotic stress, allowing free Pro accumulation. We show here that overexpression of MsProDH in tobacco and Arabidopsis or impairment of P5C oxidation in the Arabidopsis p5cdh mutant did not change the cellular Pro to P5C ratio under ambient and osmotic stress conditions, indicating that P5C excess was reduced to Pro in a mitochondrial-cytosolic cycle. This cycle, involving ProDH and P5C reductase, exists in animal cells and now demonstrated in plants. As a part of the cycle, Pro oxidation by the ProDH-FAD complex delivers electrons to the electron transport chain. Hyperactivity of the cycle, e.g. when an excess of exogenous l-Pro is provided, generates mitochondrial reactive oxygen species (ROS) by delivering electrons to O(2), as demonstrated by the mitochondria-specific MitoSox staining of superoxide ions. Lack of P5CDH activity led to higher ROS production under dark and light conditions in the presence of Pro excess, as well as rendered plants hypersensitive to heat stress. Balancing mitochondrial ROS production during increased Pro oxidation is therefore critical for avoiding Pro-related toxic effects. Hence, normal oxidation of P5C to Glu by P5CDH is key to prevent P5C-Pro intensive cycling and avoid ROS production from electron run-off.

摘要

在所有真核生物中,脯氨酸的两步氧化过程在线粒体内膜上由脯氨酸脱氢酶(ProDH)和Δ¹-吡咯啉-5-羧酸脱氢酶(P5CDH)相继作用完成,ProDH产生Δ¹-吡咯啉-5-羧酸(P5C),P5CDH将P5C氧化为谷氨酸。在渗透胁迫下,植物中的这条分解代谢途径受到下调,从而使游离脯氨酸得以积累。我们在此表明,烟草和拟南芥中MsProDH的过表达或拟南芥p5cdh突变体中P5C氧化的受损,在环境和渗透胁迫条件下均未改变细胞内脯氨酸与P5C的比例,这表明过量的P5C在一个线粒体-细胞质循环中被还原为脯氨酸。这个涉及ProDH和P5C还原酶的循环存在于动物细胞中,现在也在植物中得到了证实。作为该循环的一部分,ProDH-FAD复合物对脯氨酸的氧化将电子传递给电子传递链。例如,当提供过量的外源L-脯氨酸时,该循环的过度活跃会通过将电子传递给O₂而产生活性氧(ROS),线粒体特异性的超氧阴离子MitoSox染色证明了这一点。在脯氨酸过量的情况下,缺乏P5CDH活性会导致在黑暗和光照条件下产生更高的ROS,并且使植物对热胁迫更加敏感。因此,在脯氨酸氧化增加时平衡线粒体ROS的产生对于避免脯氨酸相关的毒性作用至关重要。因此,P5CDH将P5C正常氧化为谷氨酸是防止P5C-脯氨酸强烈循环并避免电子泄漏产生ROS的关键。

相似文献

1
Unraveling delta1-pyrroline-5-carboxylate-proline cycle in plants by uncoupled expression of proline oxidation enzymes.
J Biol Chem. 2009 Sep 25;284(39):26482-92. doi: 10.1074/jbc.M109.009340. Epub 2009 Jul 27.
2
3
Proline dehydrogenase contributes to pathogen defense in Arabidopsis.
Plant Physiol. 2011 Apr;155(4):1947-59. doi: 10.1104/pp.110.167163. Epub 2011 Feb 10.
4
Proline dehydrogenase is a positive regulator of cell death in different kingdoms.
Plant Signal Behav. 2011 Aug;6(8):1195-7. doi: 10.4161/psb.6.8.15791. Epub 2011 Aug 1.
5
The role of [Delta]1-pyrroline-5-carboxylate dehydrogenase in proline degradation.
Plant Cell. 2004 Dec;16(12):3413-25. doi: 10.1105/tpc.104.023622. Epub 2004 Nov 17.
7
Δ(1)-pyrroline-5-carboxylate/glutamate biogenesis is required for fungal virulence and sporulation.
PLoS One. 2013 Sep 9;8(9):e73483. doi: 10.1371/journal.pone.0073483. eCollection 2013.
10
Non-redundant functions of two proline dehydrogenase isoforms in Arabidopsis.
BMC Plant Biol. 2010 Apr 19;10:70. doi: 10.1186/1471-2229-10-70.

引用本文的文献

2
Proline and ROS: A Unified Mechanism in Plant Development and Stress Response?
Plants (Basel). 2024 Dec 24;14(1):2. doi: 10.3390/plants14010002.
5
Overexpression and knockdown of cotton gene reveals its drought and salt stress tolerance role.
iScience. 2023 Dec 7;27(1):108664. doi: 10.1016/j.isci.2023.108664. eCollection 2024 Jan 19.
8
Rapid and Nondestructive Detection of Proline in Serum Using Near-Infrared Spectroscopy and Partial Least Squares.
J Anal Methods Chem. 2022 Oct 19;2022:4610140. doi: 10.1155/2022/4610140. eCollection 2022.
9
Molecular mechanisms of resistance to conferred by the peach gene: A multi-omics view.
Front Plant Sci. 2022 Oct 5;13:992544. doi: 10.3389/fpls.2022.992544. eCollection 2022.
10
Burning questions for a warming and changing world: 15 unknowns in plant abiotic stress.
Plant Cell. 2023 Jan 2;35(1):67-108. doi: 10.1093/plcell/koac263.

本文引用的文献

3
Proline accumulation in plants: a review.
Amino Acids. 2008 Nov;35(4):753-9. doi: 10.1007/s00726-008-0061-6. Epub 2008 Apr 1.
4
Structural biology of proline catabolism.
Amino Acids. 2008 Nov;35(4):719-30. doi: 10.1007/s00726-008-0062-5. Epub 2008 Mar 28.
5
The transcriptional co-activator MBF1c is a key regulator of thermotolerance in Arabidopsis thaliana.
J Biol Chem. 2008 Apr 4;283(14):9269-75. doi: 10.1074/jbc.M709187200. Epub 2008 Jan 17.
7
Core genome responses involved in acclimation to high temperature.
Plant Physiol. 2008 Feb;146(2):748-61. doi: 10.1104/pp.107.112060. Epub 2007 Nov 30.
8
Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis.
Plant J. 2008 Jan;53(1):11-28. doi: 10.1111/j.1365-313X.2007.03318.x. Epub 2007 Oct 27.
9
Simple quantitative detection of mitochondrial superoxide production in live cells.
Biochem Biophys Res Commun. 2007 Jun 22;358(1):203-8. doi: 10.1016/j.bbrc.2007.04.106. Epub 2007 Apr 25.
10
Two tobacco proline dehydrogenases are differentially regulated and play a role in early plant development.
Planta. 2007 Apr;225(5):1313-24. doi: 10.1007/s00425-006-0429-3. Epub 2006 Nov 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验