Suppr超能文献

TMPRSS2 和 ADAM17 对 ACE2 的切割具有差异性,只有 TMPRSS2 的蛋白水解作用才能增强严重急性呼吸综合征冠状病毒刺突蛋白驱动的进入。

TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein.

机构信息

Infection Biology Unit, German Primate Center, Göttingen, Germany.

出版信息

J Virol. 2014 Jan;88(2):1293-307. doi: 10.1128/JVI.02202-13. Epub 2013 Nov 13.

Abstract

The type II transmembrane serine proteases TMPRSS2 and HAT can cleave and activate the spike protein (S) of the severe acute respiratory syndrome coronavirus (SARS-CoV) for membrane fusion. In addition, these proteases cleave the viral receptor, the carboxypeptidase angiotensin-converting enzyme 2 (ACE2), and it was proposed that ACE2 cleavage augments viral infectivity. However, no mechanistic insights into this process were obtained and the relevance of ACE2 cleavage for SARS-CoV S protein (SARS-S) activation has not been determined. Here, we show that arginine and lysine residues within ACE2 amino acids 697 to 716 are essential for cleavage by TMPRSS2 and HAT and that ACE2 processing is required for augmentation of SARS-S-driven entry by these proteases. In contrast, ACE2 cleavage was dispensable for activation of the viral S protein. Expression of TMPRSS2 increased cellular uptake of soluble SARS-S, suggesting that protease-dependent augmentation of viral entry might be due to increased uptake of virions into target cells. Finally, TMPRSS2 was found to compete with the metalloprotease ADAM17 for ACE2 processing, but only cleavage by TMPRSS2 resulted in augmented SARS-S-driven entry. Collectively, our results in conjunction with those of previous studies indicate that TMPRSS2 and potentially related proteases promote SARS-CoV entry by two separate mechanisms: ACE2 cleavage, which might promote viral uptake, and SARS-S cleavage, which activates the S protein for membrane fusion. These observations have interesting implications for the development of novel therapeutics. In addition, they should spur efforts to determine whether receptor cleavage promotes entry of other coronaviruses, which use peptidases as entry receptors.

摘要

II 型跨膜丝氨酸蛋白酶 TMPRSS2 和 HAT 可以切割并激活严重急性呼吸综合征冠状病毒 (SARS-CoV) 的刺突蛋白 (S) 以实现膜融合。此外,这些蛋白酶还能切割病毒受体,即血管紧张素转换酶 2 (ACE2) 的羧肽酶,有人提出 ACE2 的切割会增强病毒的感染力。然而,目前还没有获得对此过程的机制性认识,也没有确定 ACE2 的切割对于 SARS-CoV S 蛋白 (SARS-S) 激活的相关性。在这里,我们表明 ACE2 氨基酸 697 到 716 内的精氨酸和赖氨酸残基对于 TMPRSS2 和 HAT 的切割是必不可少的,并且 ACE2 的加工对于这些蛋白酶增强 SARS-S 驱动的进入是必需的。相比之下,ACE2 的切割对于病毒 S 蛋白的激活是可有可无的。TMPRSS2 的表达增加了可溶性 SARS-S 的细胞摄取,这表明蛋白酶依赖性增强病毒进入可能是由于靶细胞中病毒颗粒的摄取增加所致。最后,发现 TMPRSS2 与金属蛋白酶 ADAM17 竞争 ACE2 的加工,但只有 TMPRSS2 的切割导致 SARS-S 驱动的进入增强。总的来说,我们的结果与之前的研究结果表明,TMPRSS2 和可能相关的蛋白酶通过两种独立的机制促进 SARS-CoV 的进入:ACE2 的切割,这可能促进病毒的摄取,以及 SARS-S 的切割,这激活 S 蛋白以实现膜融合。这些观察结果对于新型治疗药物的开发具有有趣的意义。此外,它们应该促使人们努力确定受体切割是否促进其他使用肽酶作为进入受体的冠状病毒的进入。

相似文献

3
SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor.
Cell. 2020 Apr 16;181(2):271-280.e8. doi: 10.1016/j.cell.2020.02.052. Epub 2020 Mar 5.
4
Distinctive Roles of Furin and TMPRSS2 in SARS-CoV-2 Infectivity.
J Virol. 2022 Apr 27;96(8):e0012822. doi: 10.1128/jvi.00128-22. Epub 2022 Mar 28.
9
ACE2 acts as a novel regulator of TMPRSS2-catalyzed proteolytic activation of influenza A virus in airway cells.
J Virol. 2024 Apr 16;98(4):e0010224. doi: 10.1128/jvi.00102-24. Epub 2024 Mar 12.
10
Modulation of TNF-alpha-converting enzyme by the spike protein of SARS-CoV and ACE2 induces TNF-alpha production and facilitates viral entry.
Proc Natl Acad Sci U S A. 2008 Jun 3;105(22):7809-14. doi: 10.1073/pnas.0711241105. Epub 2008 May 19.

引用本文的文献

3
Age-dependent ACE2/TMPRSS2 expression and SARS-CoV-2 household transmission in Gran Canaria.
PLoS One. 2025 Jul 29;20(7):e0329229. doi: 10.1371/journal.pone.0329229. eCollection 2025.
5
Placenta - A Competent, But Not Infallible, Antiviral and Antiparasitic Barrier.
Reprod Sci. 2025 Jul 14. doi: 10.1007/s43032-025-01921-8.
8
Evolutionary dynamics of heparan sulfate utilization by SARS-CoV-2.
mBio. 2025 Jun 23:e0130325. doi: 10.1128/mbio.01303-25.
9
Overview of host-directed antiviral targets for future research and drug development.
Acta Pharm Sin B. 2025 Apr;15(4):1723-1751. doi: 10.1016/j.apsb.2025.03.011. Epub 2025 Mar 8.
10
Estrogen and viral infection.
Front Immunol. 2025 May 16;16:1556728. doi: 10.3389/fimmu.2025.1556728. eCollection 2025.

本文引用的文献

1
Proteolytic activation of the SARS-coronavirus spike protein: cutting enzymes at the cutting edge of antiviral research.
Antiviral Res. 2013 Dec;100(3):605-14. doi: 10.1016/j.antiviral.2013.09.028. Epub 2013 Oct 8.
3
Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC.
Nature. 2013 Mar 14;495(7440):251-4. doi: 10.1038/nature12005.
5
Severity and outcome associated with human coronavirus OC43 infections among children.
Pediatr Infect Dis J. 2013 Apr;32(4):325-9. doi: 10.1097/INF.0b013e3182812787.
6
Coronavirus infections in hospitalized pediatric patients with acute respiratory tract disease.
BMC Infect Dis. 2012 Dec 20;12:365. doi: 10.1186/1471-2334-12-365.
7
Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia.
N Engl J Med. 2012 Nov 8;367(19):1814-20. doi: 10.1056/NEJMoa1211721. Epub 2012 Oct 17.
8
NIH Image to ImageJ: 25 years of image analysis.
Nat Methods. 2012 Jul;9(7):671-5. doi: 10.1038/nmeth.2089.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验