Suppr超能文献

耐药性。人类疟原虫群体转录组学揭示了青蒿素耐药的机制。

Drug resistance. Population transcriptomics of human malaria parasites reveals the mechanism of artemisinin resistance.

机构信息

School of Biological Sciences, Nanyang Technological University, Singapore.

Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand. Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.

出版信息

Science. 2015 Jan 23;347(6220):431-5. doi: 10.1126/science.1260403. Epub 2014 Dec 11.

Abstract

Artemisinin resistance in Plasmodium falciparum threatens global efforts to control and eliminate malaria. Polymorphisms in the kelch domain-carrying protein K13 are associated with artemisinin resistance, but the underlying molecular mechanisms are unknown. We analyzed the in vivo transcriptomes of 1043 P. falciparum isolates from patients with acute malaria and found that artemisinin resistance is associated with increased expression of unfolded protein response (UPR) pathways involving the major PROSC and TRiC chaperone complexes. Artemisinin-resistant parasites also exhibit decelerated progression through the first part of the asexual intraerythrocytic development cycle. These findings suggest that artemisinin-resistant parasites remain in a state of decelerated development at the young ring stage, whereas their up-regulated UPR pathways mitigate protein damage caused by artemisinin. The expression profiles of UPR-related genes also associate with the geographical origin of parasite isolates, further suggesting their role in emerging artemisinin resistance in the Greater Mekong Subregion.

摘要

青蒿素抗药性在恶性疟原虫中出现,威胁全球控制和消灭疟疾的努力。kelch 结构域蛋白 K13 的多态性与青蒿素抗药性有关,但潜在的分子机制尚不清楚。我们分析了 1043 株来自急性疟疾患者的恶性疟原虫分离株的体内转录组,发现青蒿素抗药性与未折叠蛋白反应 (UPR) 途径的表达增加有关,涉及主要的 PROSC 和 TRiC 伴侣复合物。青蒿素耐药寄生虫在无性红内期发育周期的第一部分进展也减慢。这些发现表明,青蒿素耐药寄生虫在年轻的环状阶段仍然处于发育减缓的状态,而其上调的 UPR 途径减轻了青蒿素引起的蛋白质损伤。与 UPR 相关的基因的表达谱也与寄生虫分离株的地理起源有关,进一步表明它们在大湄公河次区域青蒿素耐药性的出现中发挥作用。

相似文献

1
Drug resistance. Population transcriptomics of human malaria parasites reveals the mechanism of artemisinin resistance.
Science. 2015 Jan 23;347(6220):431-5. doi: 10.1126/science.1260403. Epub 2014 Dec 11.
3
Infectious diseases. Understanding artemisinin resistance.
Science. 2015 Jan 23;347(6220):373-4. doi: 10.1126/science.aaa4102.
4
A molecular marker of artemisinin-resistant Plasmodium falciparum malaria.
Nature. 2014 Jan 2;505(7481):50-5. doi: 10.1038/nature12876. Epub 2013 Dec 18.
7
Artemisinin Action and Resistance in Plasmodium falciparum.
Trends Parasitol. 2016 Sep;32(9):682-696. doi: 10.1016/j.pt.2016.05.010. Epub 2016 Jun 9.
8
Plasmodium falciparum kelch 13: a potential molecular marker for tackling artemisinin-resistant malaria parasites.
Expert Rev Anti Infect Ther. 2016;14(1):125-35. doi: 10.1586/14787210.2016.1106938. Epub 2015 Nov 4.
9
The spread of artemisinin-resistant Plasmodium falciparum in the Greater Mekong subregion: a molecular epidemiology observational study.
Lancet Infect Dis. 2017 May;17(5):491-497. doi: 10.1016/S1473-3099(17)30048-8. Epub 2017 Feb 2.
10
Artemisinin-Resistant Plasmodium falciparum Malaria.
Microbiol Spectr. 2016 Jun;4(3). doi: 10.1128/microbiolspec.EI10-0013-2016.

引用本文的文献

1
Epitranscriptomic Dysregulation Underpins Artemisinin Mechanism of Action.
bioRxiv. 2025 Aug 28:2025.08.28.672746. doi: 10.1101/2025.08.28.672746.
2
Epigenetically conferred ring-stage survival in Plasmodium falciparum against artemisinin treatment.
Nat Commun. 2025 Aug 28;16(1):8037. doi: 10.1038/s41467-025-62479-2.
5
Antimalarial drug resistance and drug discovery: learning from the past to innovate the future.
Int J Parasitol Drugs Drug Resist. 2025 Jul 8;28:100602. doi: 10.1016/j.ijpddr.2025.100602.
6
Malaria: past, present, and future.
Signal Transduct Target Ther. 2025 Jun 17;10(1):188. doi: 10.1038/s41392-025-02246-3.
9
Endoplasmic Reticulum Stress: Implications in Diseases.
Protein J. 2025 Apr;44(2):147-161. doi: 10.1007/s10930-025-10264-x. Epub 2025 Mar 13.
10

本文引用的文献

1
Dihydroartemisinin-piperaquine failure in Cambodia.
N Engl J Med. 2014 Jul 31;371(5):484-5. doi: 10.1056/NEJMc1403007.
2
Spread of artemisinin resistance in Plasmodium falciparum malaria.
N Engl J Med. 2014 Jul 31;371(5):411-23. doi: 10.1056/NEJMoa1314981.
3
A molecular marker of artemisinin-resistant Plasmodium falciparum malaria.
Nature. 2014 Jan 2;505(7481):50-5. doi: 10.1038/nature12876. Epub 2013 Dec 18.
6
Nrf2 and Nrf1 signaling and ER stress crosstalk: implication for proteasomal degradation and autophagy.
Cell Mol Life Sci. 2013 Dec;70(24):4681-94. doi: 10.1007/s00018-013-1409-y. Epub 2013 Jun 26.
7
Multiple populations of artemisinin-resistant Plasmodium falciparum in Cambodia.
Nat Genet. 2013 Jun;45(6):648-55. doi: 10.1038/ng.2624. Epub 2013 Apr 28.
8
Altered temporal response of malaria parasites determines differential sensitivity to artemisinin.
Proc Natl Acad Sci U S A. 2013 Mar 26;110(13):5157-62. doi: 10.1073/pnas.1217452110. Epub 2013 Feb 19.
9
Artemisinin resistance in Plasmodium falciparum: A process linked to dormancy?
Int J Parasitol Drugs Drug Resist. 2012 Dec 1;2:249-255. doi: 10.1016/j.ijpddr.2012.01.001. Epub 2012 Jan 27.
10
Genetic loci associated with delayed clearance of Plasmodium falciparum following artemisinin treatment in Southeast Asia.
Proc Natl Acad Sci U S A. 2013 Jan 2;110(1):240-5. doi: 10.1073/pnas.1211205110. Epub 2012 Dec 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验