Suppr超能文献

基于 N-聚糖的内质网分子伴侣与蛋白质质量控制系统:钙连蛋白结合循环

N-Glycan-based ER Molecular Chaperone and Protein Quality Control System: The Calnexin Binding Cycle.

作者信息

Lamriben Lydia, Graham Jill B, Adams Benjamin M, Hebert Daniel N

机构信息

Department of Biochemistry and Molecular Biology, Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA, 01003, USA.

出版信息

Traffic. 2016 Apr;17(4):308-26. doi: 10.1111/tra.12358. Epub 2016 Jan 10.

Abstract

Helenius and colleagues proposed over 20-years ago a paradigm-shifting model for how chaperone binding in the endoplasmic reticulum was mediated and controlled for a new type of molecular chaperone- the carbohydrate-binding chaperones, calnexin and calreticulin. While the originally established basics for this lectin chaperone binding cycle holds true today, there has been a number of important advances that have expanded our understanding of its mechanisms of action, role in protein homeostasis, and its connection to disease states that are highlighted in this review.

摘要

20多年前,海伦纽斯及其同事提出了一种范式转变模型,用于解释内质网中伴侣蛋白结合是如何介导和控制一种新型分子伴侣——碳水化合物结合伴侣蛋白钙连蛋白和钙网蛋白的。虽然最初确立的这种凝集素伴侣蛋白结合循环的基本原理至今仍然适用,但在其作用机制、在蛋白质稳态中的作用以及与疾病状态的联系方面,已经有了许多重要进展,本综述将重点介绍这些进展。

相似文献

1
N-Glycan-based ER Molecular Chaperone and Protein Quality Control System: The Calnexin Binding Cycle.
Traffic. 2016 Apr;17(4):308-26. doi: 10.1111/tra.12358. Epub 2016 Jan 10.
2
Calnexin cycle - structural features of the ER chaperone system.
FEBS J. 2020 Oct;287(20):4322-4340. doi: 10.1111/febs.15330. Epub 2020 Apr 27.
3
Beyond lectins: the calnexin/calreticulin chaperone system of the endoplasmic reticulum.
J Cell Sci. 2006 Feb 15;119(Pt 4):615-23. doi: 10.1242/jcs.02856.
5
Role of calnexin in the glycan-independent quality control of proteolipid protein.
EMBO J. 2003 Jun 16;22(12):2948-58. doi: 10.1093/emboj/cdg300.
6
N-glycan-dependent quality control of the Na,K-ATPase beta(2) subunit.
Biochemistry. 2010 Apr 13;49(14):3116-28. doi: 10.1021/bi100115a.
7
Protein folding and quality control in the endoplasmic reticulum.
Curr Opin Cell Biol. 2004 Aug;16(4):343-9. doi: 10.1016/j.ceb.2004.06.012.
8
Cell surface targeting of myelin oligodendrocyte glycoprotein (MOG) in the absence of endoplasmic reticulum molecular chaperones.
Biochim Biophys Acta. 2011 May;1813(5):1105-10. doi: 10.1016/j.bbamcr.2010.12.014. Epub 2010 Dec 21.
9
N-linked sugar-regulated protein folding and quality control in the ER.
Semin Cell Dev Biol. 2015 May;41:79-89. doi: 10.1016/j.semcdb.2014.12.001. Epub 2014 Dec 19.

引用本文的文献

2
Mechanical effect of protein glycosylation on BiP-mediated post-translational translocation and folding in the endoplasmic reticulum.
Biophys Rev. 2025 Apr 7;17(2):435-447. doi: 10.1007/s12551-025-01313-x. eCollection 2025 Apr.
4
Calreticulin-From the Endoplasmic Reticulum to the Plasma Membrane-Adventures of a Wandering Protein.
Cancers (Basel). 2025 Jan 17;17(2):288. doi: 10.3390/cancers17020288.
7
Time-resolved interactome profiling deconvolutes secretory protein quality control dynamics.
Mol Syst Biol. 2024 Sep;20(9):1049-1075. doi: 10.1038/s44320-024-00058-1. Epub 2024 Aug 5.
9
Influence of glycosylation on the immunogenicity and antigenicity of viral immunogens.
Biotechnol Adv. 2024 Jan-Feb;70:108283. doi: 10.1016/j.biotechadv.2023.108283. Epub 2023 Nov 14.
10
Systems-Wide Site-Specific Analysis of Glycoproteins.
Methods Mol Biol. 2023;2718:151-165. doi: 10.1007/978-1-0716-3457-8_9.

本文引用的文献

1
Co- and Post-Translational Protein Folding in the ER.
Traffic. 2016 Jun;17(6):615-38. doi: 10.1111/tra.12392. Epub 2016 Apr 22.
2
Regulation of calreticulin-major histocompatibility complex (MHC) class I interactions by ATP.
Proc Natl Acad Sci U S A. 2015 Oct 13;112(41):E5608-17. doi: 10.1073/pnas.1510132112. Epub 2015 Sep 29.
3
Macrophages eat cancer cells using their own calreticulin as a guide: roles of TLR and Btk.
Proc Natl Acad Sci U S A. 2015 Feb 17;112(7):2145-50. doi: 10.1073/pnas.1424907112. Epub 2015 Feb 2.
5
Glycan regulation of ER-associated degradation through compartmentalization.
Semin Cell Dev Biol. 2015 May;41:99-109. doi: 10.1016/j.semcdb.2014.11.006. Epub 2014 Nov 24.
6
Reglucosylation by UDP-glucose:glycoprotein glucosyltransferase 1 delays glycoprotein secretion but not degradation.
Mol Biol Cell. 2015 Feb 1;26(3):390-405. doi: 10.1091/mbc.E14-08-1254. Epub 2014 Nov 26.
7
The intrinsic and extrinsic effects of N-linked glycans on glycoproteostasis.
Nat Chem Biol. 2014 Nov;10(11):902-10. doi: 10.1038/nchembio.1651. Epub 2014 Oct 17.
8
Strain-specific antiviral activity of iminosugars against human influenza A viruses.
J Antimicrob Chemother. 2015 Jan;70(1):136-52. doi: 10.1093/jac/dku349. Epub 2014 Sep 15.
9
Both isoforms of human UDP-glucose:glycoprotein glucosyltransferase are enzymatically active.
Glycobiology. 2014 Apr;24(4):344-50. doi: 10.1093/glycob/cwt163. Epub 2014 Jan 9.
10
Emerging principles for the therapeutic exploitation of glycosylation.
Science. 2014 Jan 3;343(6166):1235681. doi: 10.1126/science.1235681.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验