Suppr超能文献

使用封装在含有多种生长因子的海藻酸盐水凝胶中的牙龈间充质干细胞进行肌肉组织工程。

Muscle Tissue Engineering Using Gingival Mesenchymal Stem Cells Encapsulated in Alginate Hydrogels Containing Multiple Growth Factors.

作者信息

Ansari Sahar, Chen Chider, Xu Xingtian, Annabi Nasim, Zadeh Homayoun H, Wu Benjamin M, Khademhosseini Ali, Shi Songtao, Moshaverinia Alireza

机构信息

Division of Growth and Development, School of Dentistry, University of California, Los Angeles, CA, USA.

School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.

出版信息

Ann Biomed Eng. 2016 Jun;44(6):1908-20. doi: 10.1007/s10439-016-1594-6. Epub 2016 Mar 23.

Abstract

Repair and regeneration of muscle tissue following traumatic injuries or muscle diseases often presents a challenging clinical situation. If a significant amount of tissue is lost the native regenerative potential of skeletal muscle will not be able to grow to fill the defect site completely. Dental-derived mesenchymal stem cells (MSCs) in combination with appropriate scaffold material, present an advantageous alternative therapeutic option for muscle tissue engineering in comparison to current treatment modalities available. To date, there has been no report on application of gingival mesenchymal stem cells (GMSCs) in three-dimensional scaffolds for muscle tissue engineering. The objectives of the current study were to develop an injectable 3D RGD-coupled alginate scaffold with multiple growth factor delivery capacity for encapsulating GMSCs, and to evaluate the capacity of encapsulated GMSCs to differentiate into myogenic tissue in vitro and in vivo where encapsulated GMSCs were transplanted subcutaneously into immunocompromised mice. The results demonstrate that after 4 weeks of differentiation in vitro, GMSCs as well as the positive control human bone marrow mesenchymal stem cells (hBMMSCs) exhibited muscle cell-like morphology with high levels of mRNA expression for gene markers related to muscle regeneration (MyoD, Myf5, and MyoG) via qPCR measurement. Our quantitative PCR analyzes revealed that the stiffness of the RGD-coupled alginate regulates the myogenic differentiation of encapsulated GMSCs. Histological and immunohistochemical/fluorescence staining for protein markers specific for myogenic tissue confirmed muscle regeneration in subcutaneous transplantation in our in vivo animal model. GMSCs showed significantly greater capacity for myogenic regeneration in comparison to hBMMSCs (p < 0.05). Altogether, our findings confirmed that GMSCs encapsulated in RGD-modified alginate hydrogel with multiple growth factor delivery capacity is a promising candidate for muscle tissue engineering.

摘要

创伤性损伤或肌肉疾病后肌肉组织的修复和再生常常带来具有挑战性的临床情况。如果大量组织丢失,骨骼肌的天然再生潜力将无法生长以完全填充缺损部位。与现有的治疗方式相比,牙源性间充质干细胞(MSCs)与合适的支架材料相结合,为肌肉组织工程提供了一种有利的替代治疗选择。迄今为止,尚无关于牙龈间充质干细胞(GMSCs)在用于肌肉组织工程的三维支架中的应用报道。本研究的目的是开发一种具有多种生长因子递送能力的可注射三维RGD偶联藻酸盐支架,用于封装GMSCs,并评估封装的GMSCs在体外和体内分化为成肌组织的能力,其中将封装有GMSCs的材料皮下移植到免疫受损小鼠体内。结果表明,在体外分化4周后,GMSCs以及阳性对照人骨髓间充质干细胞(hBMMSCs)呈现出肌肉细胞样形态,通过定量聚合酶链反应(qPCR)测量,与肌肉再生相关的基因标记物(MyoD、Myf5和MyoG)的mRNA表达水平较高。我们的定量PCR分析表明,RGD偶联藻酸盐的硬度调节封装的GMSCs的成肌分化。对成肌组织特异性蛋白质标记物的组织学和免疫组织化学/荧光染色证实了我们体内动物模型皮下移植中的肌肉再生。与hBMMSCs相比,GMSCs表现出显著更强的成肌再生能力(p < 0.05)。总之,我们的研究结果证实,封装在具有多种生长因子递送能力的RGD修饰藻酸盐水凝胶中的GMSCs是肌肉组织工程的一个有前途的候选者。

相似文献

1
3
Regulation of the fate of dental-derived mesenchymal stem cells using engineered alginate-GelMA hydrogels.
J Biomed Mater Res A. 2017 Nov;105(11):2957-2967. doi: 10.1002/jbm.a.36148. Epub 2017 Jul 14.
4
Application of stem cells derived from the periodontal ligament or gingival tissue sources for tendon tissue regeneration.
Biomaterials. 2014 Mar;35(9):2642-50. doi: 10.1016/j.biomaterials.2013.12.053. Epub 2014 Jan 4.
6
Dental mesenchymal stem cells encapsulated in an alginate hydrogel co-delivery microencapsulation system for cartilage regeneration.
Acta Biomater. 2013 Dec;9(12):9343-50. doi: 10.1016/j.actbio.2013.07.023. Epub 2013 Jul 26.
8
Alginate hydrogel as a promising scaffold for dental-derived stem cells: an in vitro study.
J Mater Sci Mater Med. 2012 Dec;23(12):3041-51. doi: 10.1007/s10856-012-4759-3. Epub 2012 Sep 4.

引用本文的文献

1
Engineering of tissue in microphysiological systems demonstrated by modelling skeletal muscle.
Regen Biomater. 2025 Jun 16;12:rbaf059. doi: 10.1093/rb/rbaf059. eCollection 2025.
3
The use of hydrogel microspheres as cell and drug delivery carriers for bone, cartilage, and soft tissue regeneration.
Biomater Transl. 2024 Sep 28;5(3):236-256. doi: 10.12336/biomatertransl.2024.03.003. eCollection 2024.
4
Gingival mesenchymal stem cells: Biological properties and therapeutic applications.
J Oral Biol Craniofac Res. 2024 Sep-Oct;14(5):547-569. doi: 10.1016/j.jobcr.2024.07.003. Epub 2024 Jul 13.
5
Tissue Engineered 3D Constructs for Volumetric Muscle Loss.
Ann Biomed Eng. 2024 Sep;52(9):2325-2347. doi: 10.1007/s10439-024-03541-w. Epub 2024 Jul 31.
6
Surface-Charge Tuned Polymeric Nanoemulsions for Carvacrol Delivery in Interkingdom Biofilms.
ACS Appl Mater Interfaces. 2024 Jul 24;16(29):37613-37622. doi: 10.1021/acsami.4c06618. Epub 2024 Jul 15.
8
Analogies and Differences Between Dental Stem Cells: Focus on Secretome in Combination with Scaffolds in Neurological Disorders.
Stem Cell Rev Rep. 2024 Jan;20(1):159-174. doi: 10.1007/s12015-023-10652-9. Epub 2023 Nov 14.
9
Stem cells and extracellular vesicles to improve preclinical orofacial soft tissue healing.
Stem Cell Res Ther. 2023 Aug 15;14(1):203. doi: 10.1186/s13287-023-03423-3.
10
Insight into muscle stem cell regeneration and mechanobiology.
Stem Cell Res Ther. 2023 May 12;14(1):129. doi: 10.1186/s13287-023-03363-y.

本文引用的文献

1
Role of muscle stem cells during skeletal regeneration.
Stem Cells. 2015 May;33(5):1501-11. doi: 10.1002/stem.1945.
2
Polysaccharide-based strategies for heart tissue engineering.
Carbohydr Polym. 2015 Feb 13;116:267-77. doi: 10.1016/j.carbpol.2014.06.010. Epub 2014 Jun 16.
3
Materials as stem cell regulators.
Nat Mater. 2014 Jun;13(6):547-57. doi: 10.1038/nmat3937.
4
Application of stem cells derived from the periodontal ligament or gingival tissue sources for tendon tissue regeneration.
Biomaterials. 2014 Mar;35(9):2642-50. doi: 10.1016/j.biomaterials.2013.12.053. Epub 2014 Jan 4.
6
Functionalization of scaffolds with chimeric anti-BMP-2 monoclonal antibodies for osseous regeneration.
Biomaterials. 2013 Dec;34(38):10191-8. doi: 10.1016/j.biomaterials.2013.08.069. Epub 2013 Sep 19.
8
Gingivae contain neural-crest- and mesoderm-derived mesenchymal stem cells.
J Dent Res. 2013 Sep;92(9):825-32. doi: 10.1177/0022034513497961. Epub 2013 Jul 18.
9
Co-encapsulation of anti-BMP2 monoclonal antibody and mesenchymal stem cells in alginate microspheres for bone tissue engineering.
Biomaterials. 2013 Sep;34(28):6572-9. doi: 10.1016/j.biomaterials.2013.05.048. Epub 2013 Jun 14.
10
Cell encapsulating biomaterial regulates mesenchymal stromal/stem cell differentiation and macrophage immunophenotype.
Stem Cells Transl Med. 2012 Oct;1(10):740-9. doi: 10.5966/sctm.2012-0061. Epub 2012 Oct 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验