Sridaran Dhivya, Ramamoorthi Ganesan, MahaboobKhan Rasool, Kumpati Premkumar
Cancer Genetics and Nanomedicine Laboratory, Department of Biomedical Science, School of Basic Medical Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India.
Immunopathology Laboratory, School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, India.
Tumour Biol. 2016 Oct;37(10):13307-13322. doi: 10.1007/s13277-016-5224-6. Epub 2016 Jul 26.
During tumorigenesis, cancer cells generate complex, unresolved interactions with the surrounding oxystressed cellular milieu called tumor microenvironment (TM) that favors spread of cancer to other body parts. This dissemination of cancer cells from the primary tumor site is the main clinical challenge in cancer treatment. In addition, the significance of enhanced oxidative stress in TM during cancer progression still remains elusive. Thus, the present study was performed to investigate the molecular and cytoskeletal alterations in breast cancer cells associated with oxystressed TM that potentiates metastasis. Our results showed that depending on the extent of oxidative stress in TM, cancer cells exhibited enhanced migration and survival with reduction of chemosensitivity. Corresponding ultrastructural analysis showed radical cytoskeletal modifications that reorganize cell-cell interactions fostering transition of epithelial cells to mesenchymal morphology (EMT) marking metastasis, which was reversed upon antioxidant treatment. Decreased E-cadherin and increased vimentin, Twist1/2 expression corroborated the initiation of EMT in oxystressed TM-influenced cells. Further evaluation of cellular energetics demonstrated significant metabolic reprogramming with inclination towards glucose or external glutamine from TM as energy source depending on the breast cancer cell type. These observations prove the elemental role of oxystressed TM in cancer progression, initiating EMT and metabolic reprogramming. Further cell-type specific metabolomic analysis would unravel the alternate mechanisms in cancer progression for effective therapeutic intervention. Graphical abstract Schematic representation of the study and proposed mechanism of oxystressed TM influenced cancer progression. Cancer cells exhibit a close association with tumor microenvironment (TM), and oxystressed TM enhances cancer cell migration and survival and reduces chemosensitivity. Oxystressed TM induces dynamic cytomorphological variations, alterations in expression patterns of adhesion markers, redox homeostasis, and metabolic reprogramming that supports epithelial to mesenchymal transition and cancer progression.
在肿瘤发生过程中,癌细胞与周围被称为肿瘤微环境(TM)的氧化应激细胞环境产生复杂且尚未解决的相互作用,这种环境有利于癌症扩散到身体其他部位。癌细胞从原发性肿瘤部位的这种扩散是癌症治疗中的主要临床挑战。此外,癌症进展过程中TM中氧化应激增强的意义仍不明确。因此,本研究旨在调查与氧化应激TM相关的乳腺癌细胞中的分子和细胞骨架改变,这种改变会促进转移。我们的结果表明,根据TM中氧化应激的程度,癌细胞表现出增强的迁移和存活能力,同时化学敏感性降低。相应的超微结构分析显示,细胞骨架发生了根本性改变,重新组织了细胞间相互作用,促进上皮细胞向间充质形态(EMT)转变,这是转移的标志,而抗氧化剂处理后这种转变会逆转。E-钙黏蛋白减少,波形蛋白、Twist1/2表达增加,证实了氧化应激TM影响的细胞中EMT的启动。对细胞能量学的进一步评估表明,根据乳腺癌细胞类型,细胞发生了显著的代谢重编程,倾向于以TM中的葡萄糖或外部谷氨酰胺作为能量来源。这些观察结果证明了氧化应激TM在癌症进展、启动EMT和代谢重编程中的重要作用。进一步的细胞类型特异性代谢组学分析将揭示癌症进展中的替代机制,以进行有效的治疗干预。图形摘要 该研究的示意图以及氧化应激TM影响癌症进展的 proposed 机制。癌细胞与肿瘤微环境(TM)密切相关,氧化应激TM增强癌细胞迁移和存活能力并降低化学敏感性。氧化应激TM诱导动态细胞形态变化、黏附标志物表达模式改变、氧化还原稳态和代谢重编程,支持上皮向间充质转变和癌症进展。 (注:“proposed”原文如此,可能有误,推测应为“ proposed”,这里按推测翻译为“提出的”)