Suppr超能文献

通过原位 DNase Hi-C 绘制 3D 基因组结构。

Mapping 3D genome architecture through in situ DNase Hi-C.

机构信息

Department of Genome Sciences, University of Washington, Seattle, Washington, USA.

Department of Pathology, University of Washington, Seattle, Washington, USA.

出版信息

Nat Protoc. 2016 Nov;11(11):2104-21. doi: 10.1038/nprot.2016.126. Epub 2016 Sep 29.

Abstract

With the advent of massively parallel sequencing, considerable work has gone into adapting chromosome conformation capture (3C) techniques to study chromosomal architecture at a genome-wide scale. We recently demonstrated that the inactive murine X chromosome adopts a bipartite structure using a novel 3C protocol, termed in situ DNase Hi-C. Like traditional Hi-C protocols, in situ DNase Hi-C requires that chromatin be chemically cross-linked, digested, end-repaired, and proximity-ligated with a biotinylated bridge adaptor. The resulting ligation products are optionally sheared, affinity-purified via streptavidin bead immobilization, and subjected to traditional next-generation library preparation for Illumina paired-end sequencing. Importantly, in situ DNase Hi-C obviates the dependence on a restriction enzyme to digest chromatin, instead relying on the endonuclease DNase I. Libraries generated by in situ DNase Hi-C have a higher effective resolution than traditional Hi-C libraries, which makes them valuable in cases in which high sequencing depth is allowed for, or when hybrid capture technologies are expected to be used. The protocol described here, which involves ∼4 d of bench work, is optimized for the study of mammalian cells, but it can be broadly applicable to any cell or tissue of interest, given experimental parameter optimization.

摘要

随着大规模平行测序的出现,人们已经做了大量工作来调整染色体构象捕获(3C)技术,以在全基因组范围内研究染色体结构。我们最近使用一种称为原位 DNase Hi-C 的新型 3C 方案证明了失活的小鼠 X 染色体采用了二部分结构。与传统的 Hi-C 方案一样,原位 DNase Hi-C 需要化学交联、消化、末端修复,并通过生物素化桥接接头进行邻近连接。所得连接产物任选地进行片段化,通过链霉亲和素珠固定化进行亲和纯化,并进行传统的 Illumina 配对末端测序的下一代文库制备。重要的是,原位 DNase Hi-C 避免了对限制性内切酶消化染色质的依赖,而是依赖内切酶 DNase I。与传统的 Hi-C 文库相比,通过原位 DNase Hi-C 生成的文库具有更高的有效分辨率,这使得它们在允许高测序深度的情况下或预期使用杂交捕获技术的情况下非常有价值。本文描述的方案涉及约 4 天的实验工作,针对哺乳动物细胞进行了优化,但只要进行实验参数优化,它就可以广泛应用于任何感兴趣的细胞或组织。

相似文献

1
Mapping 3D genome architecture through in situ DNase Hi-C.
Nat Protoc. 2016 Nov;11(11):2104-21. doi: 10.1038/nprot.2016.126. Epub 2016 Sep 29.
2
Using DNase Hi-C techniques to map global and local three-dimensional genome architecture at high resolution.
Methods. 2018 Jun 1;142:59-73. doi: 10.1016/j.ymeth.2018.01.014. Epub 2018 Jan 31.
3
Targeted DNase Hi-C.
Methods Mol Biol. 2021;2157:65-83. doi: 10.1007/978-1-0716-0664-3_5.
4
Chromosome Conformation Capture Followed by Genome-Wide Sequencing (Hi-C) in Drosophila Embryos.
Methods Mol Biol. 2023;2655:41-55. doi: 10.1007/978-1-0716-3143-0_4.
5
BAT Hi-C maps global chromatin interactions in an efficient and economical way.
Methods. 2020 Jan 1;170:38-47. doi: 10.1016/j.ymeth.2019.08.004. Epub 2019 Aug 20.
6
Hi-C 3.0: Improved Protocol for Genome-Wide Chromosome Conformation Capture.
Curr Protoc. 2021 Jul;1(7):e198. doi: 10.1002/cpz1.198.
7
A cookbook for DNase Hi-C.
Epigenetics Chromatin. 2021 Mar 20;14(1):15. doi: 10.1186/s13072-021-00389-5.
9
Generating a Three-Dimensional Genome from with Hi-C.
Cold Spring Harb Protoc. 2019 May 1;2019(5):pdb.prot098343. doi: 10.1101/pdb.prot098343.
10
Hi-C: a comprehensive technique to capture the conformation of genomes.
Methods. 2012 Nov;58(3):268-76. doi: 10.1016/j.ymeth.2012.05.001. Epub 2012 May 29.

引用本文的文献

1
StripePy: fast and robust characterization of architectural stripes.
Bioinformatics. 2025 Jun 2;41(6). doi: 10.1093/bioinformatics/btaf351.
4
Memory CD4+ T cells sequentially restructure their 3D genome during stepwise activation.
Front Cell Dev Biol. 2025 Feb 13;13:1514627. doi: 10.3389/fcell.2025.1514627. eCollection 2025.
5
CiFi: Accurate long-read chromatin conformation capture with low-input requirements.
bioRxiv. 2025 Feb 5:2025.01.31.635566. doi: 10.1101/2025.01.31.635566.
7
Sex and neo-sex chromosome evolution in beetles.
PLoS Genet. 2024 Nov 25;20(11):e1011477. doi: 10.1371/journal.pgen.1011477. eCollection 2024 Nov.
8
Multiscale 3D genome rewiring during PTF1A-mediated somatic cell reprogramming into neural stem cells.
Commun Biol. 2024 Nov 14;7(1):1505. doi: 10.1038/s42003-024-07230-1.
9
CWL-Based Analysis Pipeline for Hi-C Data: From FASTQ Files to Matrices.
Methods Mol Biol. 2025;2856:79-117. doi: 10.1007/978-1-0716-4136-1_6.
10
DiffGR: Detecting Differentially Interacting Genomic Regions from Hi-C Contact Maps.
Genomics Proteomics Bioinformatics. 2024 Jul 3;22(2). doi: 10.1093/gpbjnl/qzae028.

本文引用的文献

1
Genome-wide mapping of promoter-anchored interactions with close to single-enhancer resolution.
Genome Biol. 2015 Aug 3;16(1):156. doi: 10.1186/s13059-015-0727-9.
2
Comparison of Hi-C results using in-solution versus in-nucleus ligation.
Genome Biol. 2015 Aug 26;16(1):175. doi: 10.1186/s13059-015-0753-7.
3
Bipartite structure of the inactive mouse X chromosome.
Genome Biol. 2015 Aug 7;16(1):152. doi: 10.1186/s13059-015-0728-8.
4
Mapping Nucleosome Resolution Chromosome Folding in Yeast by Micro-C.
Cell. 2015 Jul 2;162(1):108-19. doi: 10.1016/j.cell.2015.05.048. Epub 2015 Jun 25.
5
Chromosomes. A comprehensive Xist interactome reveals cohesin repulsion and an RNA-directed chromosome conformation.
Science. 2015 Jul 17;349(6245). doi: 10.1126/science.aab2276. Epub 2015 Jun 18.
6
Mapping long-range promoter contacts in human cells with high-resolution capture Hi-C.
Nat Genet. 2015 Jun;47(6):598-606. doi: 10.1038/ng.3286. Epub 2015 May 4.
7
The pluripotent regulatory circuitry connecting promoters to their long-range interacting elements.
Genome Res. 2015 Apr;25(4):582-97. doi: 10.1101/gr.185272.114. Epub 2015 Mar 9.
8
Chromatin architecture reorganization during stem cell differentiation.
Nature. 2015 Feb 19;518(7539):331-6. doi: 10.1038/nature14222.
9
Integrative analysis of 111 reference human epigenomes.
Nature. 2015 Feb 19;518(7539):317-30. doi: 10.1038/nature14248.
10
A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping.
Cell. 2014 Dec 18;159(7):1665-80. doi: 10.1016/j.cell.2014.11.021. Epub 2014 Dec 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验