Suppr超能文献

肝母细胞瘤中多种Myc依赖性和Myc非依赖性生物合成途径的协调活动

Coordinated Activities of Multiple Myc-dependent and Myc-independent Biosynthetic Pathways in Hepatoblastoma.

作者信息

Wang Huabo, Lu Jie, Edmunds Lia R, Kulkarni Sucheta, Dolezal James, Tao Junyan, Ranganathan Sarangarajan, Jackson Laura, Fromherz Marc, Beer-Stolz Donna, Uppala Radha, Bharathi Sivakama, Monga Satdarshan P, Goetzman Eric S, Prochownik Edward V

机构信息

From the Division of Hematology/Oncology, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15224.

the Department of Pathology, the University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15237.

出版信息

J Biol Chem. 2016 Dec 16;291(51):26241-26251. doi: 10.1074/jbc.M116.754218. Epub 2016 Oct 13.

Abstract

Hepatoblastoma (HB) is associated with aberrant activation of the β-catenin and Hippo/YAP signaling pathways. Overexpression of mutant β-catenin and YAP in mice induces HBs that express high levels of c-Myc (Myc). In light of recent observations that Myc is unnecessary for long-term hepatocyte proliferation, we have now examined its role in HB pathogenesis using the above model. Although Myc was found to be dispensable for in vivo HB initiation, it was necessary to sustain rapid tumor growth. Gene expression profiling identified key molecular differences between myc (WT) and myc (KO) hepatocytes and HBs that explain these behaviors. In HBs, these included both Myc-dependent and Myc-independent increases in families of transcripts encoding ribosomal proteins, non-structural factors affecting ribosome assembly and function, and enzymes catalyzing glycolysis and lipid bio-synthesis. In contrast, transcripts encoding enzymes involved in fatty acid β-oxidation were mostly down-regulated. Myc-independent metabolic changes associated with HBs included dramatic reductions in mitochondrial mass and oxidative function, increases in ATP content and pyruvate dehydrogenase activity, and marked inhibition of fatty acid β-oxidation (FAO). Myc-dependent metabolic changes included higher levels of neutral lipid and acetyl-CoA in WT tumors. The latter correlated with higher histone H3 acetylation. Collectively, our results indicate that the role of Myc in HB pathogenesis is to impose mutually dependent changes in gene expression and metabolic reprogramming that are unattainable in non-transformed cells and that cooperate to maximize tumor growth.

摘要

肝母细胞瘤(HB)与β-连环蛋白和Hippo/YAP信号通路的异常激活有关。在小鼠中突变型β-连环蛋白和YAP的过表达会诱导表达高水平c-Myc(Myc)的肝母细胞瘤。鉴于最近的观察结果表明Myc对于长期肝细胞增殖并非必需,我们现在使用上述模型研究了其在HB发病机制中的作用。尽管发现Myc对于体内HB起始并非必需,但它对于维持肿瘤的快速生长是必要的。基因表达谱分析确定了myc(野生型)和myc(敲除型)肝细胞及肝母细胞瘤之间的关键分子差异,这些差异解释了这些行为。在肝母细胞瘤中,这些差异包括编码核糖体蛋白、影响核糖体组装和功能的非结构因子以及催化糖酵解和脂质生物合成的酶家族的转录本在Myc依赖和Myc非依赖的情况下均增加。相比之下,编码参与脂肪酸β氧化的酶的转录本大多下调。与肝母细胞瘤相关的Myc非依赖的代谢变化包括线粒体质量和氧化功能的显著降低、ATP含量和丙酮酸脱氢酶活性的增加以及脂肪酸β氧化(FAO)的明显抑制。Myc依赖的代谢变化包括野生型肿瘤中更高水平的中性脂质和乙酰辅酶A。后者与更高的组蛋白H3乙酰化相关。总体而言,我们的结果表明Myc在HB发病机制中的作用是在基因表达和代谢重编程中施加相互依赖的变化,这些变化在未转化细胞中是无法实现的,并且共同作用以最大化肿瘤生长。

相似文献

1
Coordinated Activities of Multiple Myc-dependent and Myc-independent Biosynthetic Pathways in Hepatoblastoma.
J Biol Chem. 2016 Dec 16;291(51):26241-26251. doi: 10.1074/jbc.M116.754218. Epub 2016 Oct 13.
2
Myc and ChREBP transcription factors cooperatively regulate normal and neoplastic hepatocyte proliferation in mice.
J Biol Chem. 2018 Sep 21;293(38):14740-14757. doi: 10.1074/jbc.RA118.004099. Epub 2018 Aug 7.
3
c-Myc programs fatty acid metabolism and dictates acetyl-CoA abundance and fate.
J Biol Chem. 2014 Sep 5;289(36):25382-92. doi: 10.1074/jbc.M114.580662. Epub 2014 Jul 22.
4
Acquired deficiency of peroxisomal dicarboxylic acid catabolism is a metabolic vulnerability in hepatoblastoma.
J Biol Chem. 2021 Jan-Jun;296:100283. doi: 10.1016/j.jbc.2021.100283. Epub 2021 Jan 13.
5
β-Catenin mutations as determinants of hepatoblastoma phenotypes in mice.
J Biol Chem. 2019 Nov 15;294(46):17524-17542. doi: 10.1074/jbc.RA119.009979. Epub 2019 Oct 9.
6
Sequential adaptive changes in a c-Myc-driven model of hepatocellular carcinoma.
J Biol Chem. 2017 Jun 16;292(24):10068-10086. doi: 10.1074/jbc.M117.782052. Epub 2017 Apr 21.
7
Identification and experimental validation of druggable epigenetic targets in hepatoblastoma.
J Hepatol. 2023 Oct;79(4):989-1005. doi: 10.1016/j.jhep.2023.05.031. Epub 2023 Jun 10.
8
Myc target miRs and liver cancer: small molecules to get Myc sick.
Gastroenterology. 2012 Feb;142(2):214-8. doi: 10.1053/j.gastro.2011.12.023. Epub 2011 Dec 16.
9
Stem cell-like micro-RNA signature driven by Myc in aggressive liver cancer.
Proc Natl Acad Sci U S A. 2010 Nov 23;107(47):20471-6. doi: 10.1073/pnas.1009009107. Epub 2010 Nov 8.
10
Elevated expression of Wnt antagonists is a common event in hepatoblastomas.
Clin Cancer Res. 2005 Jun 15;11(12):4295-304. doi: 10.1158/1078-0432.CCR-04-1162.

引用本文的文献

2
Loss of long-chain acyl-CoA dehydrogenase protects against acute kidney injury.
JCI Insight. 2025 Feb 11;10(6):e186073. doi: 10.1172/jci.insight.186073.
3
Gas1-Mediated Suppression of Hepatoblastoma Tumorigenesis.
Am J Pathol. 2025 May;195(5):982-994. doi: 10.1016/j.ajpath.2025.01.005. Epub 2025 Jan 29.
6
The Myc-Like Mlx Network Impacts Aging and Metabolism.
bioRxiv. 2023 Nov 27:2023.11.26.568749. doi: 10.1101/2023.11.26.568749.
7
MYC in liver cancer: mechanisms and targeted therapy opportunities.
Oncogene. 2023 Nov;42(45):3303-3318. doi: 10.1038/s41388-023-02861-w. Epub 2023 Oct 13.
8
A Novel Transgenic Mouse Model Implicates as a Promoter of Hepatocellular Carcinoma.
Int J Mol Sci. 2023 Aug 9;24(16):12618. doi: 10.3390/ijms241612618.
9
Lessons in aging from Myc knockout mouse models.
Front Cell Dev Biol. 2023 Aug 9;11:1244321. doi: 10.3389/fcell.2023.1244321. eCollection 2023.
10
Premature aging and reduced cancer incidence associated with near-complete body-wide Myc inactivation.
Cell Rep. 2023 Aug 29;42(8):112830. doi: 10.1016/j.celrep.2023.112830. Epub 2023 Jul 22.

本文引用的文献

1
Abnormal lipid processing but normal long-term repopulation potential of myc-/- hepatocytes.
Oncotarget. 2016 May 24;7(21):30379-95. doi: 10.18632/oncotarget.8856.
2
Mitochondrial DNA copy number variation across human cancers.
Elife. 2016 Feb 22;5:e10769. doi: 10.7554/eLife.10769.
3
MYC, Metabolism, and Cancer.
Cancer Discov. 2015 Oct;5(10):1024-39. doi: 10.1158/2159-8290.CD-15-0507. Epub 2015 Sep 17.
4
c-Myc and AMPK Control Cellular Energy Levels by Cooperatively Regulating Mitochondrial Structure and Function.
PLoS One. 2015 Jul 31;10(7):e0134049. doi: 10.1371/journal.pone.0134049. eCollection 2015.
5
β-Catenin Signaling and Roles in Liver Homeostasis, Injury, and Tumorigenesis.
Gastroenterology. 2015 Jun;148(7):1294-310. doi: 10.1053/j.gastro.2015.02.056. Epub 2015 Mar 5.
6
Targeting the translation machinery in cancer.
Nat Rev Drug Discov. 2015 Apr;14(4):261-78. doi: 10.1038/nrd4505. Epub 2015 Mar 6.
7
Reduced expression of MYC increases longevity and enhances healthspan.
Cell. 2015 Jan 29;160(3):477-88. doi: 10.1016/j.cell.2014.12.016. Epub 2015 Jan 22.
8
Stress-mediated translational control in cancer cells.
Biochim Biophys Acta. 2015 Jul;1849(7):845-60. doi: 10.1016/j.bbagrm.2014.11.002. Epub 2014 Nov 10.
9
Targeting molecular addictions in cancer.
Br J Cancer. 2014 Nov 25;111(11):2033-8. doi: 10.1038/bjc.2014.461. Epub 2014 Sep 30.
10
Hippo/YAP, β-catenin, and the cancer cell: a "ménage à trois" in hepatoblastoma.
Gastroenterology. 2014 Sep;147(3):562-5. doi: 10.1053/j.gastro.2014.07.026. Epub 2014 Jul 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验