Sharma Arvind, Sharma Manmohan, Yogavel Manickam, Sharma Amit
Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India.
PLoS Negl Trop Dis. 2016 Nov 2;10(11):e0005084. doi: 10.1371/journal.pntd.0005084. eCollection 2016 Nov.
Helminth parasites are an assemblage of two major phyla of nematodes (also known as roundworms) and platyhelminths (also called flatworms). These parasites are a major human health burden, and infections caused by helminths are considered under neglected tropical diseases (NTDs). These infections are typified by limited clinical treatment options and threat of drug resistance. Aminoacyl-tRNA synthetases (aaRSs) are vital enzymes that decode genetic information and enable protein translation. The specific inhibition of pathogen aaRSs bores well for development of next generation anti-parasitics. Here, we have identified and annotated aaRSs and accessory proteins from Loa loa (nematode) and Schistosoma mansoni (flatworm) to provide a glimpse of these protein translation enzymes within these parasites. Using purified parasitic lysyl-tRNA synthetases (KRSs), we developed series of assays that address KRS enzymatic activity, oligomeric states, crystal structure and inhibition profiles. We show that L. loa and S. mansoni KRSs are potently inhibited by the fungal metabolite cladosporin. Our co-crystal structure of Loa loa KRS-cladosporin complex reveals key interacting residues and provides a platform for structure-based drug development. This work hence provides a new direction for both novel target discovery and inhibitor development against eukaryotic pathogens that include L. loa and S. mansoni.
蠕虫寄生虫是线虫(也称为蛔虫)和扁形虫(也称为扁虫)这两个主要门类的集合。这些寄生虫是人类健康的重大负担,由蠕虫引起的感染被视为被忽视的热带病(NTDs)。这些感染的特点是临床治疗选择有限且存在耐药性威胁。氨酰 - tRNA合成酶(aaRSs)是至关重要的酶,它们解码遗传信息并实现蛋白质翻译。对病原体aaRSs的特异性抑制对于下一代抗寄生虫药物的开发很有前景。在这里,我们已经鉴定并注释了来自罗阿丝虫(线虫)和曼氏血吸虫(扁虫)的aaRSs及辅助蛋白,以初步了解这些寄生虫体内的这些蛋白质翻译酶。我们使用纯化的寄生赖氨酰 - tRNA合成酶(KRSs),开发了一系列针对KRS酶活性、寡聚状态、晶体结构和抑制谱的测定方法。我们发现罗阿丝虫和曼氏血吸虫的KRSs受到真菌代谢产物枝孢菌素的有效抑制。我们的罗阿丝虫KRS - 枝孢菌素复合物的共晶体结构揭示了关键的相互作用残基,并为基于结构的药物开发提供了一个平台。因此,这项工作为针对包括罗阿丝虫和曼氏血吸虫在内的真核病原体的新型靶点发现和抑制剂开发提供了新的方向。