Suppr超能文献

阿匹利莫德作为首个用于治疗B细胞非霍奇金淋巴瘤的PIKfyve激酶抑制剂的鉴定。

Identification of apilimod as a first-in-class PIKfyve kinase inhibitor for treatment of B-cell non-Hodgkin lymphoma.

作者信息

Gayle Sophia, Landrette Sean, Beeharry Neil, Conrad Chris, Hernandez Marylens, Beckett Paul, Ferguson Shawn M, Mandelkern Talya, Zheng Meiling, Xu Tian, Rothberg Jonathan, Lichenstein Henri

机构信息

LAM Therapeutics, Guilford, CT.

Program in Cellular Neuroscience, Neurodegeneration and Repair, Department of Cell Biology, Yale University School of Medicine, New Haven, CT.

出版信息

Blood. 2017 Mar 30;129(13):1768-1778. doi: 10.1182/blood-2016-09-736892. Epub 2017 Jan 19.

Abstract

We identified apilimod as an antiproliferative compound by high-throughput screening of clinical-stage drugs. Apilimod exhibits exquisite specificity for phosphatidylinositol-3-phosphate 5-kinase (PIKfyve) lipid kinase and has selective cytotoxic activity in B-cell non-Hodgkin lymphoma (B-NHL) compared with normal cells. Apilimod displays nanomolar activity in vitro, and in vivo studies demonstrate single-agent efficacy as well as synergy with approved B-NHL drugs. Using biochemical and knockdown approaches, and discovery of a kinase domain mutation conferring resistance, we demonstrate that apilimod-mediated cytotoxicity is driven by PIKfyve inhibition. Furthermore, a critical role for lysosome dysfunction as a major factor contributing to apilimod's cytotoxicity is supported by a genome-wide CRISPR screen. In the screen, (master transcriptional regulator of lysosomal biogenesis) and endosomal/lysosomal genes , , and were identified as important determinants of apilimod sensitivity. These findings thus suggest that disruption of lysosomal homeostasis with apilimod represents a novel approach to treat B-NHL.

摘要

通过对临床阶段药物进行高通量筛选,我们确定阿匹莫德为一种抗增殖化合物。阿匹莫德对磷脂酰肌醇-3-磷酸5-激酶(PIKfyve)脂质激酶表现出极高的特异性,与正常细胞相比,在B细胞非霍奇金淋巴瘤(B-NHL)中具有选择性细胞毒活性。阿匹莫德在体外表现出纳摩尔活性,体内研究证明其单药疗效以及与已获批的B-NHL药物的协同作用。通过生化和基因敲低方法,以及发现赋予耐药性的激酶结构域突变,我们证明阿匹莫德介导的细胞毒性是由PIKfyve抑制驱动的。此外,全基因组CRISPR筛选支持溶酶体功能障碍作为阿匹莫德细胞毒性主要促成因素的关键作用。在筛选中,溶酶体生物发生的主要转录调节因子以及内体/溶酶体基因、和被确定为阿匹莫德敏感性的重要决定因素。因此,这些发现表明用阿匹莫德破坏溶酶体稳态是治疗B-NHL的一种新方法。

相似文献

1
Identification of apilimod as a first-in-class PIKfyve kinase inhibitor for treatment of B-cell non-Hodgkin lymphoma.
Blood. 2017 Mar 30;129(13):1768-1778. doi: 10.1182/blood-2016-09-736892. Epub 2017 Jan 19.
2
B-cell non-Hodgkin lymphoma: Selective vulnerability to PIKFYVE inhibition.
Autophagy. 2017 Jun 3;13(6):1082-1083. doi: 10.1080/15548627.2017.1304871. Epub 2017 Mar 28.
3
Snx10 and PIKfyve are required for lysosome formation in osteoclasts.
J Cell Biochem. 2020 Apr;121(4):2927-2937. doi: 10.1002/jcb.29534. Epub 2019 Nov 6.
5
The phosphatidylinositol-3-phosphate 5-kinase inhibitor apilimod blocks filoviral entry and infection.
PLoS Negl Trop Dis. 2017 Apr 12;11(4):e0005540. doi: 10.1371/journal.pntd.0005540. eCollection 2017 Apr.
6
Apilimod alters TGFβ signaling pathway and prevents cardiac fibrotic remodeling.
Theranostics. 2021 Apr 19;11(13):6491-6506. doi: 10.7150/thno.55821. eCollection 2021.
7
The PIKfyve Inhibitor Apilimod: A Double-Edged Sword against COVID-19.
Cells. 2020 Dec 27;10(1):30. doi: 10.3390/cells10010030.
9
PIKfyve inhibition increases exosome release and induces secretory autophagy.
Cell Mol Life Sci. 2016 Dec;73(24):4717-4737. doi: 10.1007/s00018-016-2309-8. Epub 2016 Jul 20.

引用本文的文献

2
CRISPRi screening identifies PIKfyve as a co-therapeutic target for obinutuzumab.
Clin Transl Med. 2025 May;15(5):e70333. doi: 10.1002/ctm2.70333.
3
Targeting PIKfyve-driven lipid metabolism in pancreatic cancer.
Nature. 2025 Apr 23. doi: 10.1038/s41586-025-08917-z.
4
5
An advanced toolset to manipulate and monitor subcellular phosphatidylinositol 3,5-bisphosphate.
J Cell Biol. 2025 Jun 2;224(6). doi: 10.1083/jcb.202408158. Epub 2025 Mar 26.
6
Sorting nexin 10 regulates lysosomal ionic homeostasis via ClC-7 by controlling PI(3,5)P2.
J Cell Biol. 2025 Jun 2;224(6). doi: 10.1083/jcb.202408174. Epub 2025 Mar 26.
8
Concurrent Inhibition of the RAS-MAPK Pathway and PIKfyve Is a Therapeutic Strategy for Pancreatic Cancer.
Cancer Res. 2025 Apr 15;85(8):1479-1495. doi: 10.1158/0008-5472.CAN-24-1757.
9
Development of a Second-Generation, Chemical Probe for PIKfyve.
J Med Chem. 2025 Feb 13;68(3):3282-3308. doi: 10.1021/acs.jmedchem.4c02531. Epub 2025 Jan 22.

本文引用的文献

1
PIKfyve Regulates Vacuole Maturation and Nutrient Recovery following Engulfment.
Dev Cell. 2016 Sep 12;38(5):536-47. doi: 10.1016/j.devcel.2016.08.001.
3
Vacuolin-1 inhibits autophagy by impairing lysosomal maturation via PIKfyve inhibition.
FEBS Lett. 2016 Jun;590(11):1576-85. doi: 10.1002/1873-3468.12195. Epub 2016 May 13.
4
Transcriptional control of autophagy-lysosome function drives pancreatic cancer metabolism.
Nature. 2015 Aug 20;524(7565):361-5. doi: 10.1038/nature14587. Epub 2015 Jul 13.
5
Beyond indigestion: emerging roles for lysosome-based signaling in human disease.
Curr Opin Cell Biol. 2015 Aug;35:59-68. doi: 10.1016/j.ceb.2015.04.014. Epub 2015 May 15.
6
piggyBac insertional mutagenesis screen identifies a role for nuclear RHOA in human ES cell differentiation.
Stem Cell Reports. 2015 May 12;4(5):926-38. doi: 10.1016/j.stemcr.2015.03.001. Epub 2015 Apr 9.
7
Up-regulation of lysosomal TRPML1 channels is essential for lysosomal adaptation to nutrient starvation.
Proc Natl Acad Sci U S A. 2015 Mar 17;112(11):E1373-81. doi: 10.1073/pnas.1419669112. Epub 2015 Mar 2.
8
Lysosomal calcium signalling regulates autophagy through calcineurin and ​TFEB.
Nat Cell Biol. 2015 Mar;17(3):288-99. doi: 10.1038/ncb3114.
9
PI(5)P regulates autophagosome biogenesis.
Mol Cell. 2015 Jan 22;57(2):219-34. doi: 10.1016/j.molcel.2014.12.007. Epub 2015 Jan 8.
10
Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.
Genome Biol. 2014;15(12):550. doi: 10.1186/s13059-014-0550-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验