Padilla Stephanie L, Qiu Jian, Nestor Casey C, Zhang Chunguang, Smith Arik W, Whiddon Benjamin B, Rønnekleiv Oline K, Kelly Martin J, Palmiter Richard D
Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195.
Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239.
Proc Natl Acad Sci U S A. 2017 Feb 28;114(9):2413-2418. doi: 10.1073/pnas.1621065114. Epub 2017 Feb 14.
Mammalian reproductive function depends upon a neuroendocrine circuit that evokes the pulsatile release of gonadotropin hormones (luteinizing hormone and follicle-stimulating hormone) from the pituitary. This reproductive circuit is sensitive to metabolic perturbations. When challenged with starvation, insufficient energy reserves attenuate gonadotropin release, leading to infertility. The reproductive neuroendocrine circuit is well established, composed of two populations of kisspeptin-expressing neurons (located in the anteroventral periventricular hypothalamus, Kiss1, and arcuate hypothalamus, Kiss1), which drive the pulsatile activity of gonadotropin-releasing hormone (GnRH) neurons. The reproductive axis is primarily regulated by gonadal steroid and circadian cues, but the starvation-sensitive input that inhibits this circuit during negative energy balance remains controversial. Agouti-related peptide (AgRP)-expressing neurons are activated during starvation and have been implicated in leptin-associated infertility. To test whether these neurons relay information to the reproductive circuit, we used AgRP-neuron ablation and optogenetics to explore connectivity in acute slice preparations. Stimulation of AgRP fibers revealed direct, inhibitory synaptic connections with Kiss1 and Kiss1 neurons. In agreement with this finding, Kiss1 neurons received less presynaptic inhibition in the absence of AgRP neurons (neonatal toxin-induced ablation). To determine whether enhancing the activity of AgRP neurons is sufficient to attenuate fertility in vivo, we artificially activated them over a sustained period and monitored fertility. Chemogenetic activation with clozapine N-oxide resulted in delayed estrous cycles and decreased fertility. These findings are consistent with the idea that, during metabolic deficiency, AgRP signaling contributes to infertility by inhibiting Kiss1 neurons.
哺乳动物的生殖功能依赖于一个神经内分泌回路,该回路能引起垂体促性腺激素(促黄体生成素和促卵泡激素)的脉冲式释放。这个生殖回路对代谢紊乱很敏感。当面临饥饿挑战时,能量储备不足会减弱促性腺激素的释放,导致不育。生殖神经内分泌回路已得到充分确立,由两类表达 kisspeptin 的神经元组成(位于室旁下丘脑腹前侧的 Kiss1 神经元和弓状下丘脑的 Kiss1 神经元),它们驱动促性腺激素释放激素(GnRH)神经元的脉冲式活动。生殖轴主要受性腺类固醇和昼夜节律信号的调节,但在负能量平衡期间抑制该回路的饥饿敏感输入仍存在争议。表达刺鼠相关肽(AgRP)的神经元在饥饿期间被激活,并与瘦素相关的不育有关。为了测试这些神经元是否将信息传递到生殖回路,我们使用 AgRP 神经元消融和光遗传学方法来探索急性脑片制备中的连接性。刺激 AgRP 纤维显示与 Kiss1 和 Kiss1 神经元存在直接的抑制性突触连接。与这一发现一致的是,在没有 AgRP 神经元(新生毒素诱导的消融)的情况下,Kiss1 神经元受到的突触前抑制较少。为了确定增强 AgRP 神经元的活性是否足以在体内减弱生育能力,我们在一段持续时间内人工激活它们并监测生育能力。用氯氮平 N - 氧化物进行化学遗传激活导致发情周期延迟和生育能力下降。这些发现与以下观点一致,即在代谢不足期间,AgRP 信号通过抑制 Kiss1 神经元导致不育。