Suppr超能文献

通过荧光共振能量转移(LRET)对静息和失活状态下哺乳动物钠通道中电压传感器位置的映射。

Mapping of voltage sensor positions in resting and inactivated mammalian sodium channels by LRET.

作者信息

Kubota Tomoya, Durek Thomas, Dang Bobo, Finol-Urdaneta Rocio K, Craik David J, Kent Stephen B H, French Robert J, Bezanilla Francisco, Correa Ana M

机构信息

Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637.

Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.

出版信息

Proc Natl Acad Sci U S A. 2017 Mar 7;114(10):E1857-E1865. doi: 10.1073/pnas.1700453114. Epub 2017 Feb 15.

Abstract

Voltage-gated sodium channels (Navs) play crucial roles in excitable cells. Although vertebrate Nav function has been extensively studied, the detailed structural basis for voltage-dependent gating mechanisms remain obscure. We have assessed the structural changes of the Nav voltage sensor domain using lanthanide-based resonance energy transfer (LRET) between the rat skeletal muscle voltage-gated sodium channel (Nav1.4) and fluorescently labeled Nav1.4-targeting toxins. We generated donor constructs with genetically encoded lanthanide-binding tags (LBTs) inserted at the extracellular end of the S4 segment of each domain (with a single LBT per construct). Three different Bodipy-labeled, Nav1.4-targeting toxins were synthesized as acceptors: β-scorpion toxin (Ts1)-Bodipy, KIIIA-Bodipy, and GIIIA-Bodipy analogs. Functional Nav-LBT channels expressed in oocytes were voltage-clamped, and distinct LRET signals were obtained in the resting and slow inactivated states. Intramolecular distances computed from the LRET signals define a geometrical map of Nav1.4 with the bound toxins, and reveal voltage-dependent structural changes related to channel gating.

摘要

电压门控钠通道(Navs)在可兴奋细胞中发挥着关键作用。尽管脊椎动物Nav功能已得到广泛研究,但电压依赖性门控机制的详细结构基础仍不清楚。我们使用大鼠骨骼肌电压门控钠通道(Nav1.4)与荧光标记的靶向Nav1.4的毒素之间基于镧系元素的共振能量转移(LRET),评估了Nav电压传感器结构域的结构变化。我们构建了供体构建体,在每个结构域的S4片段细胞外末端插入了基因编码的镧系元素结合标签(LBTs)(每个构建体一个LBT)。合成了三种不同的硼二吡咯(Bodipy)标记的靶向Nav1.4的毒素作为受体:β-蝎毒素(Ts1)-Bodipy、KIIIA-Bodipy和GIIIA-Bodipy类似物。在卵母细胞中表达的功能性Nav-LBT通道进行电压钳制,在静息和缓慢失活状态下获得了不同的LRET信号。根据LRET信号计算出的分子内距离定义了与结合毒素的Nav1.4的几何图谱,并揭示了与通道门控相关的电压依赖性结构变化。

相似文献

1
Mapping of voltage sensor positions in resting and inactivated mammalian sodium channels by LRET.
Proc Natl Acad Sci U S A. 2017 Mar 7;114(10):E1857-E1865. doi: 10.1073/pnas.1700453114. Epub 2017 Feb 15.
2
beta-Scorpion toxin modifies gating transitions in all four voltage sensors of the sodium channel.
J Gen Physiol. 2007 Sep;130(3):257-68. doi: 10.1085/jgp.200609719. Epub 2007 Aug 13.
4
muO conotoxins inhibit NaV channels by interfering with their voltage sensors in domain-2.
Channels (Austin). 2007 Jul-Aug;1(4):253-62. doi: 10.4161/chan.4847. Epub 2007 Aug 7.
6
A gamut of undiscovered electrophysiological effects produced by Tityus serrulatus toxin 1 on NaV-type isoforms.
Neuropharmacology. 2015 Aug;95:269-77. doi: 10.1016/j.neuropharm.2015.03.027. Epub 2015 Apr 7.
8
Modulation of human Nav1.7 channel gating by synthetic α-scorpion toxin OD1 and its analogs.
Channels (Austin). 2016;10(2):139-47. doi: 10.1080/19336950.2015.1120392. Epub 2015 Dec 8.
10
Inhibition of sodium channel gating by trapping the domain II voltage sensor with protoxin II.
Mol Pharmacol. 2008 Mar;73(3):1020-8. doi: 10.1124/mol.107.041046. Epub 2007 Dec 21.

引用本文的文献

1
A sodium channel mutant removes fast inactivation with the inactivation particle bound.
J Gen Physiol. 2025 Jan 6;157(1). doi: 10.1085/jgp.202413667. Epub 2024 Nov 27.
2
Molecular determinants of μ-conotoxin KIIIA interaction with the human voltage-gated sodium channel Na1.7.
Front Pharmacol. 2023 Mar 16;14:1156855. doi: 10.3389/fphar.2023.1156855. eCollection 2023.
3
Naview: A d3.js Based JavaScript Library for Drawing and Annotating Voltage-Gated Sodium Channels Membrane Diagrams.
Front Bioinform. 2022 Feb 11;2:774417. doi: 10.3389/fbinf.2022.774417. eCollection 2022.
4
Chemical and Biological Tools for the Study of Voltage-Gated Sodium Channels in Electrogenesis and Nociception.
Chembiochem. 2022 Jul 5;23(13):e202100625. doi: 10.1002/cbic.202100625. Epub 2022 Mar 21.
5
A Novel Spider Toxin Inhibits Fast Inactivation of the Na1.9 Channel by Binding to Domain III and Domain IV Voltage Sensors.
Front Pharmacol. 2021 Dec 6;12:778534. doi: 10.3389/fphar.2021.778534. eCollection 2021.
6
Conformations of voltage-sensing domain III differentially define NaV channel closed- and open-state inactivation.
J Gen Physiol. 2021 Sep 6;153(9). doi: 10.1085/jgp.202112891. Epub 2021 Aug 4.
7
Spider Venom Peptide Pn3a Inhibition of Primary Afferent High Voltage-Activated Calcium Channels.
Front Pharmacol. 2021 Jan 28;11:633679. doi: 10.3389/fphar.2020.633679. eCollection 2020.
8
Maxwell Equations without a Polarization Field, Using a Paradigm from Biophysics.
Entropy (Basel). 2021 Jan 30;23(2):172. doi: 10.3390/e23020172.
9
Lanthanide-Based Optical Probes of Biological Systems.
Cell Chem Biol. 2020 Aug 20;27(8):921-936. doi: 10.1016/j.chembiol.2020.07.009. Epub 2020 Jul 30.
10
Distinguishing Potassium Channel Resting State Conformations in Live Cells with Environment-Sensitive Fluorescence.
ACS Chem Neurosci. 2020 Aug 5;11(15):2316-2326. doi: 10.1021/acschemneuro.0c00276. Epub 2020 Jul 9.

本文引用的文献

1
Structure of the voltage-gated calcium channel Ca(v)1.1 at 3.6 Å resolution.
Nature. 2016 Sep 8;537(7619):191-196. doi: 10.1038/nature19321. Epub 2016 Aug 31.
2
Structure of the voltage-gated calcium channel Cav1.1 complex.
Science. 2015 Dec 18;350(6267):aad2395. doi: 10.1126/science.aad2395.
3
Functional heterogeneity of the four voltage sensors of a human L-type calcium channel.
Proc Natl Acad Sci U S A. 2014 Dec 23;111(51):18381-6. doi: 10.1073/pnas.1411127112. Epub 2014 Dec 8.
4
Probing α-3(10) transitions in a voltage-sensing S4 helix.
Biophys J. 2014 Sep 2;107(5):1117-1128. doi: 10.1016/j.bpj.2014.07.042.
6
Total chemical synthesis of biologically active fluorescent dye-labeled Ts1 toxin.
Angew Chem Int Ed Engl. 2014 Aug 18;53(34):8970-4. doi: 10.1002/anie.201404438. Epub 2014 Jul 2.
8
Domain IV voltage-sensor movement is both sufficient and rate limiting for fast inactivation in sodium channels.
J Gen Physiol. 2013 Aug;142(2):101-12. doi: 10.1085/jgp.201310998. Epub 2013 Jul 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验