Suppr超能文献

使用卷积神经网络对乳腺癌组织学图像进行分类

Classification of breast cancer histology images using Convolutional Neural Networks.

作者信息

Araújo Teresa, Aresta Guilherme, Castro Eduardo, Rouco José, Aguiar Paulo, Eloy Catarina, Polónia António, Campilho Aurélio

机构信息

Faculdade de Engenharia da Universidade do Porto (FEUP), R. Dr. Roberto Frias s/n, 4200-465 Porto, Portugal.

Instituto de Engenharia de Sistemas e Computadores - Tecnologia e Ciência (INESC-TEC), R. Dr. Roberto Frias, 4200 Porto, Portugal.

出版信息

PLoS One. 2017 Jun 1;12(6):e0177544. doi: 10.1371/journal.pone.0177544. eCollection 2017.

Abstract

Breast cancer is one of the main causes of cancer death worldwide. The diagnosis of biopsy tissue with hematoxylin and eosin stained images is non-trivial and specialists often disagree on the final diagnosis. Computer-aided Diagnosis systems contribute to reduce the cost and increase the efficiency of this process. Conventional classification approaches rely on feature extraction methods designed for a specific problem based on field-knowledge. To overcome the many difficulties of the feature-based approaches, deep learning methods are becoming important alternatives. A method for the classification of hematoxylin and eosin stained breast biopsy images using Convolutional Neural Networks (CNNs) is proposed. Images are classified in four classes, normal tissue, benign lesion, in situ carcinoma and invasive carcinoma, and in two classes, carcinoma and non-carcinoma. The architecture of the network is designed to retrieve information at different scales, including both nuclei and overall tissue organization. This design allows the extension of the proposed system to whole-slide histology images. The features extracted by the CNN are also used for training a Support Vector Machine classifier. Accuracies of 77.8% for four class and 83.3% for carcinoma/non-carcinoma are achieved. The sensitivity of our method for cancer cases is 95.6%.

摘要

乳腺癌是全球癌症死亡的主要原因之一。对苏木精和伊红染色图像的活检组织进行诊断并非易事,专家们在最终诊断上常常存在分歧。计算机辅助诊断系统有助于降低这一过程的成本并提高效率。传统的分类方法依赖于基于领域知识为特定问题设计的特征提取方法。为克服基于特征方法的诸多困难,深度学习方法正成为重要的替代方案。本文提出一种使用卷积神经网络(CNN)对苏木精和伊红染色的乳腺活检图像进行分类的方法。图像被分为四类:正常组织、良性病变、原位癌和浸润癌,以及两类:癌和非癌。网络架构旨在检索不同尺度的信息,包括细胞核和整体组织结构。这种设计允许将所提出的系统扩展到全切片组织学图像。CNN提取的特征也用于训练支持向量机分类器。四类分类的准确率为77.8%,癌/非癌分类的准确率为83.3%。我们的方法对癌症病例的敏感性为95.6%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d8d/5453426/1482b0122396/pone.0177544.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验