Suppr超能文献

通过机器学习算法增强乳腺癌诊断。

Enhancing breast cancer diagnosis through machine learning algorithms.

作者信息

Amraei Javad, Mirzapoor Aboulfazl, Motarjem Kiomars, Abdolahad Mohammad

机构信息

Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran.

Advanced and Smart Nanobiosystems Lab, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.

出版信息

Sci Rep. 2025 Jul 2;15(1):23316. doi: 10.1038/s41598-025-07628-9.

Abstract

Among the most important health concerns in the world, and the number one cause of death in women, is breast cancer. Bearing in mind that there are more than 100 types of cancer, each presenting different symptoms, its early detection is indeed a big challenge. The prevalence of breast cancer indicates the prudent need for effective diagnostic and prognostic approaches. From 2016 to 2020, 19.6 deaths per 100, 000 women occurred annually due to breast cancer-a factor indicating the importance of early treatments. Machine Learning has become important for the improvement of early diagnosis and prognosis that may have the potential to reduce mortality rates. Some considerable volume of research work has been carried out on the use of Machine Learning algorithms for accurate diagnosis of breast cancer. In this research has done extensive algorithm evaluation like SVM, DT, RF, Logistic regression, KNN and ANN using datasets CDP Breast Cancer. The important performance indicators observed for each of these algorithms included accuracy, precision, recall, sensitivity, and specificity. These findings are an important step forward in the application of Machine Learning to improve diagnostic accuracy, thus enabling early detection and mitigating the major consequences of breast cancer on global health.

摘要

乳腺癌是全球最重要的健康问题之一,也是女性的首要死因。鉴于有100多种癌症,每种癌症都有不同的症状,早期检测确实是一项巨大挑战。乳腺癌的流行表明,迫切需要有效的诊断和预后方法。2016年至2020年,每年每10万名女性中有19.6人死于乳腺癌,这一因素表明早期治疗的重要性。机器学习对于改善早期诊断和预后变得至关重要,这有可能降低死亡率。已经开展了大量关于使用机器学习算法准确诊断乳腺癌的研究工作。在这项研究中,使用数据集CDP乳腺癌对支持向量机、决策树、随机森林、逻辑回归、K近邻和人工神经网络等算法进行了广泛的评估。观察到的这些算法各自的重要性能指标包括准确率、精确率、召回率、灵敏度和特异性。这些发现是机器学习应用向前迈出的重要一步,有助于提高诊断准确性,从而实现早期检测并减轻乳腺癌对全球健康的重大影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c5f/12222905/a45459f63eef/41598_2025_7628_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验