Suppr超能文献

瘤内递送灭活的安卡拉改良痘苗病毒(iMVA)通过STING和Batf3依赖性树突状细胞诱导全身抗肿瘤免疫。

Intratumoral delivery of inactivated modified vaccinia virus Ankara (iMVA) induces systemic antitumor immunity via STING and Batf3-dependent dendritic cells.

作者信息

Dai Peihong, Wang Weiyi, Yang Ning, Serna-Tamayo Cristian, Ricca Jacob M, Zamarin Dmitriy, Shuman Stewart, Merghoub Taha, Wolchok Jedd D, Deng Liang

机构信息

Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.

Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.

出版信息

Sci Immunol. 2017 May 19;2(11). doi: 10.1126/sciimmunol.aal1713.

Abstract

Advanced cancers remain a therapeutic challenge despite recent progress in targeted therapy and immunotherapy. Novel approaches are needed to alter the tumor immunosuppressive microenvironment and to facilitate the recognition of tumor antigens that leads to antitumor immunity. Poxviruses, such as modified vaccinia virus Ankara (MVA), have potential as immunotherapeutic agents. We show that infection of conventional dendritic cells (DCs) with heat- or ultraviolet-inactivated MVA leads to higher levels of interferon induction than MVA alone through the cGAS (cyclic guanosine monophosphate-adenosine monophosphate synthase)-STING cytosolic DNA-sensing pathway. Intratumoral injection of inactivated MVA (iMVA) was effective and generated adaptive antitumor immunity in murine melanoma and colon cancer models. iMVA-induced antitumor therapy was less effective in STING- or Batf3-deficient mice than in wild-type mice, indicating that both cytosolic DNA sensing and Batf3-dependent CD103/CD8α DCs are essential for iMVA immunotherapy. The combination of intratumoral delivery of iMVA and systemic delivery of immune checkpoint blockade generated synergistic antitumor effects in bilateral tumor implantation models as well as in a unilateral large established tumor model. Our results suggest that inactivated vaccinia virus could be used as an immunotherapeutic agent for human cancers.

摘要

尽管在靶向治疗和免疫治疗方面取得了最新进展,但晚期癌症仍然是一个治疗挑战。需要新的方法来改变肿瘤免疫抑制微环境,并促进对导致抗肿瘤免疫的肿瘤抗原的识别。痘病毒,如改良安卡拉痘苗病毒(MVA),具有作为免疫治疗剂的潜力。我们发现,用热灭活或紫外线灭活的MVA感染传统树突状细胞(DC),通过cGAS(环磷酸鸟苷-磷酸腺苷合酶)-STING胞质DNA感应途径,比单独使用MVA能诱导更高水平的干扰素。在小鼠黑色素瘤和结肠癌模型中,瘤内注射灭活的MVA(iMVA)是有效的,并产生了适应性抗肿瘤免疫。与野生型小鼠相比,iMVA诱导的抗肿瘤治疗在STING或Batf3缺陷小鼠中效果较差,这表明胞质DNA感应和Batf3依赖的CD103/CD8α DC对iMVA免疫治疗都至关重要。在双侧肿瘤植入模型以及单侧大型既定肿瘤模型中,瘤内递送iMVA与全身递送免疫检查点阻断剂的联合产生了协同抗肿瘤作用。我们的结果表明,灭活的痘苗病毒可作为人类癌症的免疫治疗剂。

相似文献

9
The lipid platform increases the activity of STING agonists to synergize checkpoint blockade therapy against melanoma.
Biomater Sci. 2021 Feb 7;9(3):765-773. doi: 10.1039/d0bm00870b. Epub 2020 Nov 17.

引用本文的文献

2
HVJ-E links Apolipoprotein d to antitumor effects.
J Immunother Cancer. 2025 Jun 19;13(6):e011442. doi: 10.1136/jitc-2024-011442.
3
Oncolytic viruses as cancer therapeutics: From mechanistic insights to clinical translation.
Mol Ther. 2025 May 7;33(5):2217-2228. doi: 10.1016/j.ymthe.2025.03.035. Epub 2025 Mar 25.
4
Cross-priming in cancer immunology and immunotherapy.
Nat Rev Cancer. 2025 Apr;25(4):249-273. doi: 10.1038/s41568-024-00785-5. Epub 2025 Jan 29.
5
Virus replication is not required for oncolytic bovine herpesvirus-1 immunotherapy.
Mol Ther Oncol. 2024 Nov 18;32(4):200906. doi: 10.1016/j.omton.2024.200906. eCollection 2024 Dec 19.
6
Potential therapeutic strategies for colitis and colon cancer: bidirectional targeting STING pathway.
EBioMedicine. 2025 Jan;111:105491. doi: 10.1016/j.ebiom.2024.105491. Epub 2024 Dec 6.
7
cGAS/STING in skin melanoma: from molecular mechanisms to therapeutics.
Cell Commun Signal. 2024 Nov 18;22(1):553. doi: 10.1186/s12964-024-01860-y.
8
Oncolytic immunotherapy with nivolumab in muscle-invasive bladder cancer: a phase 1b trial.
Nat Med. 2025 Jan;31(1):176-188. doi: 10.1038/s41591-024-03324-9. Epub 2024 Nov 9.
10
A new MVA ancestor-derived oncolytic vaccinia virus induces immunogenic tumor cell death and robust antitumor immune responses.
Mol Ther. 2024 Jul 3;32(7):2406-2422. doi: 10.1016/j.ymthe.2024.05.014. Epub 2024 May 11.

本文引用的文献

1
Targeting T Cell Co-receptors for Cancer Therapy.
Immunity. 2016 May 17;44(5):1069-78. doi: 10.1016/j.immuni.2016.04.023.
3
PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: Mechanisms, response biomarkers, and combinations.
Sci Transl Med. 2016 Mar 2;8(328):328rv4. doi: 10.1126/scitranslmed.aad7118.
4
5
Oncolytic viruses: a new class of immunotherapy drugs.
Nat Rev Drug Discov. 2015 Sep;14(9):642-62. doi: 10.1038/nrd4663.
6
Genetic vaccines to potentiate the effective CD103+ dendritic cell-mediated cross-priming of antitumor immunity.
J Immunol. 2015 Jun 15;194(12):5937-47. doi: 10.4049/jimmunol.1500089. Epub 2015 May 13.
7
Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity.
Nature. 2015 Jul 9;523(7559):231-5. doi: 10.1038/nature14404. Epub 2015 May 11.
8
Direct Activation of STING in the Tumor Microenvironment Leads to Potent and Systemic Tumor Regression and Immunity.
Cell Rep. 2015 May 19;11(7):1018-30. doi: 10.1016/j.celrep.2015.04.031. Epub 2015 May 7.
9
Immune checkpoint blockade: a common denominator approach to cancer therapy.
Cancer Cell. 2015 Apr 13;27(4):450-61. doi: 10.1016/j.ccell.2015.03.001. Epub 2015 Apr 6.
10
The future of immune checkpoint therapy.
Science. 2015 Apr 3;348(6230):56-61. doi: 10.1126/science.aaa8172.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验