Suppr超能文献

NoRMCorre:一种用于钙成像数据分段刚性运动校正的在线算法。

NoRMCorre: An online algorithm for piecewise rigid motion correction of calcium imaging data.

机构信息

Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY 10010, USA.

Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY 10010, USA.

出版信息

J Neurosci Methods. 2017 Nov 1;291:83-94. doi: 10.1016/j.jneumeth.2017.07.031. Epub 2017 Aug 3.

Abstract

BACKGROUND

Motion correction is a challenging pre-processing problem that arises early in the analysis pipeline of calcium imaging data sequences. The motion artifacts in two-photon microscopy recordings can be non-rigid, arising from the finite time of raster scanning and non-uniform deformations of the brain medium.

NEW METHOD

We introduce an algorithm for fast Non-Rigid Motion Correction (NoRMCorre) based on template matching. NoRMCorre operates by splitting the field of view (FOV) into overlapping spatial patches along all directions. The patches are registered at a sub-pixel resolution for rigid translation against a regularly updated template. The estimated alignments are subsequently up-sampled to create a smooth motion field for each frame that can efficiently approximate non-rigid artifacts in a piecewise-rigid manner.

EXISTING METHODS

Existing approaches either do not scale well in terms of computational performance or are targeted to non-rigid artifacts arising just from the finite speed of raster scanning, and thus cannot correct for non-rigid motion observable in datasets from a large FOV.

RESULTS

NoRMCorre can be run in an online mode resulting in comparable to or even faster than real time motion registration of streaming data. We evaluate its performance with simple yet intuitive metrics and compare against other non-rigid registration methods on simulated data and in vivo two-photon calcium imaging datasets. Open source Matlab and Python code is also made available.

CONCLUSIONS

The proposed method and accompanying code can be useful for solving large scale image registration problems in calcium imaging, especially in the presence of non-rigid deformations.

摘要

背景

运动校正(Motion correction)是钙成像数据序列分析流水线早期出现的一项具有挑战性的预处理问题。双光子显微镜记录中的运动伪影可能是非刚性的,这是由于光栅扫描的有限时间和大脑介质的非均匀变形引起的。

新方法

我们引入了一种基于模板匹配的快速非刚性运动校正(NoRMCorre)算法。NoRMCorre 通过在所有方向上将视场(FOV)分割成重叠的空间补丁来工作。这些补丁以亚像素分辨率与定期更新的模板进行刚性平移配准。随后,对估计的对齐进行上采样,为每一帧创建一个平滑的运动场,以便以分段刚性的方式有效地近似非刚性伪影。

已有方法

现有方法在计算性能方面要么不能很好地扩展,要么仅针对仅由光栅扫描的有限速度引起的非刚性伪影,因此不能校正大 FOV 数据集中观察到的非刚性运动。

结果

NoRMCorre 可以以在线模式运行,其结果与实时运动注册相当,甚至更快,适用于流式数据。我们使用简单直观的指标来评估其性能,并在模拟数据和体内双光子钙成像数据集上与其他非刚性配准方法进行比较。同时还提供了开源的 Matlab 和 Python 代码。

结论

该方法和附带的代码对于解决钙成像中的大规模图像配准问题特别有用,尤其是在存在非刚性变形的情况下。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验