Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, United States.
Department of Statistics, Columbia University, New York, United States.
Elife. 2019 Jan 17;8:e38173. doi: 10.7554/eLife.38173.
Advances in fluorescence microscopy enable monitoring larger brain areas in-vivo with finer time resolution. The resulting data rates require reproducible analysis pipelines that are reliable, fully automated, and scalable to datasets generated over the course of months. We present CaImAn, an open-source library for calcium imaging data analysis. CaImAn provides automatic and scalable methods to address problems common to pre-processing, including motion correction, neural activity identification, and registration across different sessions of data collection. It does this while requiring minimal user intervention, with good scalability on computers ranging from laptops to high-performance computing clusters. CaImAn is suitable for two-photon and one-photon imaging, and also enables real-time analysis on streaming data. To benchmark the performance of CaImAn we collected and combined a corpus of manual annotations from multiple labelers on nine mouse two-photon datasets. We demonstrate that CaImAn achieves near-human performance in detecting locations of active neurons.
荧光显微镜的进步使得能够以更高的时间分辨率在体内监测更大的脑区。由此产生的数据率需要可重复的分析管道,这些管道可靠、全自动且可扩展到数月内生成的数据集。我们介绍了 CaImAn,这是一个用于钙成像数据分析的开源库。CaImAn 提供了自动且可扩展的方法来解决预处理中常见的问题,包括运动校正、神经活动识别以及在不同数据收集会话之间的注册。它在要求用户干预最小的情况下做到这一点,并且在从笔记本电脑到高性能计算集群的计算机上都具有良好的可扩展性。CaImAn 适用于双光子和单光子成像,并且还能够对实时数据流进行分析。为了对 CaImAn 的性能进行基准测试,我们收集并结合了来自九个小鼠双光子数据集的多个标签的手动注释的语料库。我们证明了 CaImAn 在检测活跃神经元的位置方面达到了接近人类的性能。