Suppr超能文献

使用时空深度学习技术在双光子钙成像中快速稳健地进行活性神经元分割。

Fast and robust active neuron segmentation in two-photon calcium imaging using spatiotemporal deep learning.

机构信息

Department of Biomedical Engineering, Duke University, Durham, NC 27708.

Department of Biomedical Engineering, Duke University, Durham, NC 27708;

出版信息

Proc Natl Acad Sci U S A. 2019 Apr 23;116(17):8554-8563. doi: 10.1073/pnas.1812995116. Epub 2019 Apr 11.

Abstract

Calcium imaging records large-scale neuronal activity with cellular resolution in vivo. Automated, fast, and reliable active neuron segmentation is a critical step in the analysis workflow of utilizing neuronal signals in real-time behavioral studies for discovery of neuronal coding properties. Here, to exploit the full spatiotemporal information in two-photon calcium imaging movies, we propose a 3D convolutional neural network to identify and segment active neurons. By utilizing a variety of two-photon microscopy datasets, we show that our method outperforms state-of-the-art techniques and is on a par with manual segmentation. Furthermore, we demonstrate that the network trained on data recorded at a specific cortical layer can be used to accurately segment active neurons from another layer with different neuron density. Finally, our work documents significant tabulation flaws in one of the most cited and active online scientific challenges in neuron segmentation. As our computationally fast method is an invaluable tool for a large spectrum of real-time optogenetic experiments, we have made our open-source software and carefully annotated dataset freely available online.

摘要

钙成像以细胞分辨率在体记录大规模神经元活动。在实时行为研究中利用神经元信号的分析工作流程中,自动、快速、可靠的活性神经元分割是一个关键步骤,以发现神经元编码特性。在这里,为了利用双光子钙成像电影中的全部时空信息,我们提出了一种 3D 卷积神经网络来识别和分割活性神经元。通过利用各种双光子显微镜数据集,我们表明我们的方法优于最先进的技术,并与手动分割相当。此外,我们证明,在特定皮层层记录的数据上训练的网络可以用于准确地从具有不同神经元密度的另一层中分割活性神经元。最后,我们的工作记录了神经元分割中最具引用和活跃的在线科学挑战之一的重大制表缺陷。由于我们的计算快速方法是广泛的实时光遗传学实验的宝贵工具,我们已经将我们的开源软件和精心注释的数据集免费在线提供。

相似文献

1
Fast and robust active neuron segmentation in two-photon calcium imaging using spatiotemporal deep learning.
Proc Natl Acad Sci U S A. 2019 Apr 23;116(17):8554-8563. doi: 10.1073/pnas.1812995116. Epub 2019 Apr 11.
3
SomaSeg: a robust neuron identification framework for two-photon imaging video.
J Neural Eng. 2024 Aug 12;21(4). doi: 10.1088/1741-2552/ad6591.
6
Deep Two-Photon Imaging In Vivo with a Red-Shifted Calcium Indicator.
Methods Mol Biol. 2019;1929:15-26. doi: 10.1007/978-1-4939-9030-6_2.
7
Mapping stimulus feature selectivity in macaque V1 by two-photon Ca imaging: Encoding-model analysis of fluorescence responses to natural movies.
Neuroimage. 2018 Oct 15;180(Pt A):312-323. doi: 10.1016/j.neuroimage.2018.01.009. Epub 2018 Jan 10.
8
Volumetric two-photon imaging of neurons using stereoscopy (vTwINS).
Nat Methods. 2017 Apr;14(4):420-426. doi: 10.1038/nmeth.4226. Epub 2017 Mar 20.
9
NeuroSeg: automated cell detection and segmentation for in vivo two-photon Ca imaging data.
Brain Struct Funct. 2018 Jan;223(1):519-533. doi: 10.1007/s00429-017-1545-5. Epub 2017 Nov 9.

引用本文的文献

1
An end-to-end recurrent compressed sensing method to denoise, detect and demix calcium imaging data.
Nat Mach Intell. 2024 Sep;6(9):1106-1118. doi: 10.1038/s42256-024-00892-w. Epub 2024 Sep 19.
3
AI in Neurology: Everything, Everywhere, All at Once Part 1: Principles and Practice.
Ann Neurol. 2025 Aug;98(2):211-230. doi: 10.1002/ana.27225. Epub 2025 Jun 19.
4
A cell-type-specific epigenetic mechanism encodes social investigatory behavior via Lrhcn1 and Hcn1.
Sci Adv. 2025 Jun 6;11(23):eadt5400. doi: 10.1126/sciadv.adt5400. Epub 2025 Jun 4.
5
Imaging neuronal voltage beyond the scattering limit.
Nat Methods. 2025 May 19. doi: 10.1038/s41592-025-02692-5.
6
A Preprocessing Toolbox for 2-Photon Subcellular Calcium Imaging.
eNeuro. 2025 May 29;12(5). doi: 10.1523/ENEURO.0565-24.2025. Print 2025 May.
7
Label-free metabolic fingerprinting of motile mammalian spermatozoa with subcellular resolution.
BMC Biol. 2025 Mar 24;23(1):85. doi: 10.1186/s12915-025-02167-1.
8
Window into the Brain: In Vivo Multiphoton Imaging.
ACS Photonics. 2024 Dec 24;12(1):1-15. doi: 10.1021/acsphotonics.4c00958. eCollection 2025 Jan 15.

本文引用的文献

1
HNCcorr: A Novel Combinatorial Approach for Cell Identification in Calcium-Imaging Movies.
eNeuro. 2019 Apr 15;6(2). doi: 10.1523/ENEURO.0304-18.2019. eCollection 2019 Mar-Apr.
2
CaImAn an open source tool for scalable calcium imaging data analysis.
Elife. 2019 Jan 17;8:e38173. doi: 10.7554/eLife.38173.
3
Automatic Multi-Organ Segmentation on Abdominal CT With Dense V-Networks.
IEEE Trans Med Imaging. 2018 Aug;37(8):1822-1834. doi: 10.1109/TMI.2018.2806309. Epub 2018 Feb 14.
4
Information-Theoretic Approach and Fundamental Limits of Resolving Two Closely Timed Neuronal Spikes in Mouse Brain Calcium Imaging.
IEEE Trans Biomed Eng. 2018 Nov;65(11):2428-2439. doi: 10.1109/TBME.2018.2812078. Epub 2018 Mar 8.
5
NiftyNet: a deep-learning platform for medical imaging.
Comput Methods Programs Biomed. 2018 May;158:113-122. doi: 10.1016/j.cmpb.2018.01.025. Epub 2018 Jan 31.
7
NeuroSeg: automated cell detection and segmentation for in vivo two-photon Ca imaging data.
Brain Struct Funct. 2018 Jan;223(1):519-533. doi: 10.1007/s00429-017-1545-5. Epub 2017 Nov 9.
8
ABLE: An Activity-Based Level Set Segmentation Algorithm for Two-Photon Calcium Imaging Data.
eNeuro. 2017 Oct 30;4(5). doi: 10.1523/ENEURO.0012-17.2017. eCollection 2017 Sep-Oct.
9
NoRMCorre: An online algorithm for piecewise rigid motion correction of calcium imaging data.
J Neurosci Methods. 2017 Nov 1;291:83-94. doi: 10.1016/j.jneumeth.2017.07.031. Epub 2017 Aug 3.
10
Multi-scale approaches for high-speed imaging and analysis of large neural populations.
PLoS Comput Biol. 2017 Aug 3;13(8):e1005685. doi: 10.1371/journal.pcbi.1005685. eCollection 2017 Aug.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验