Department of Biomedical Engineering, Duke University, Durham, NC 27708.
Department of Biomedical Engineering, Duke University, Durham, NC 27708;
Proc Natl Acad Sci U S A. 2019 Apr 23;116(17):8554-8563. doi: 10.1073/pnas.1812995116. Epub 2019 Apr 11.
Calcium imaging records large-scale neuronal activity with cellular resolution in vivo. Automated, fast, and reliable active neuron segmentation is a critical step in the analysis workflow of utilizing neuronal signals in real-time behavioral studies for discovery of neuronal coding properties. Here, to exploit the full spatiotemporal information in two-photon calcium imaging movies, we propose a 3D convolutional neural network to identify and segment active neurons. By utilizing a variety of two-photon microscopy datasets, we show that our method outperforms state-of-the-art techniques and is on a par with manual segmentation. Furthermore, we demonstrate that the network trained on data recorded at a specific cortical layer can be used to accurately segment active neurons from another layer with different neuron density. Finally, our work documents significant tabulation flaws in one of the most cited and active online scientific challenges in neuron segmentation. As our computationally fast method is an invaluable tool for a large spectrum of real-time optogenetic experiments, we have made our open-source software and carefully annotated dataset freely available online.
钙成像以细胞分辨率在体记录大规模神经元活动。在实时行为研究中利用神经元信号的分析工作流程中,自动、快速、可靠的活性神经元分割是一个关键步骤,以发现神经元编码特性。在这里,为了利用双光子钙成像电影中的全部时空信息,我们提出了一种 3D 卷积神经网络来识别和分割活性神经元。通过利用各种双光子显微镜数据集,我们表明我们的方法优于最先进的技术,并与手动分割相当。此外,我们证明,在特定皮层层记录的数据上训练的网络可以用于准确地从具有不同神经元密度的另一层中分割活性神经元。最后,我们的工作记录了神经元分割中最具引用和活跃的在线科学挑战之一的重大制表缺陷。由于我们的计算快速方法是广泛的实时光遗传学实验的宝贵工具,我们已经将我们的开源软件和精心注释的数据集免费在线提供。