Khalil Hadi, Kanisicak Onur, Prasad Vikram, Correll Robert N, Fu Xing, Schips Tobias, Vagnozzi Ronald J, Liu Ruijie, Huynh Thanh, Lee Se-Jin, Karch Jason, Molkentin Jeffery D
Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA.
Department of Biomedical Sciences, Grand Valley State University, Allendale, Michigan, USA.
J Clin Invest. 2017 Oct 2;127(10):3770-3783. doi: 10.1172/JCI94753. Epub 2017 Sep 11.
The master cytokine TGF-β mediates tissue fibrosis associated with inflammation and tissue injury. TGF-β induces fibroblast activation and differentiation into myofibroblasts that secrete extracellular matrix proteins. Canonical TGF-β signaling mobilizes Smad2 and Smad3 transcription factors that control fibrosis by promoting gene expression. However, the importance of TGF-β-Smad2/3 signaling in fibroblast-mediated cardiac fibrosis has not been directly evaluated in vivo. Here, we examined pressure overload-induced cardiac fibrosis in fibroblast- and myofibroblast-specific inducible Cre-expressing mouse lines with selective deletion of the TGF-β receptors Tgfbr1/2, Smad2, or Smad3. Fibroblast-specific deletion of Tgfbr1/2 or Smad3, but not Smad2, markedly reduced the pressure overload-induced fibrotic response as well as fibrosis mediated by a heart-specific, latency-resistant TGF-β mutant transgene. Interestingly, cardiac fibroblast-specific deletion of Tgfbr1/2, but not Smad2/3, attenuated the cardiac hypertrophic response to pressure overload stimulation. Mechanistically, loss of Smad2/3 from tissue-resident fibroblasts attenuated injury-induced cellular expansion within the heart and the expression of fibrosis-mediating genes. Deletion of Smad2/3 or Tgfbr1/2 from cardiac fibroblasts similarly inhibited the gene program for fibrosis and extracellular matrix remodeling, although deletion of Tgfbr1/2 uniquely altered expression of an array of regulatory genes involved in cardiomyocyte homeostasis and disease compensation. These findings implicate TGF-β-Smad2/3 signaling in activated tissue-resident cardiac fibroblasts as principal mediators of the fibrotic response.
主要细胞因子转化生长因子-β(TGF-β)介导与炎症和组织损伤相关的组织纤维化。TGF-β诱导成纤维细胞活化并分化为分泌细胞外基质蛋白的肌成纤维细胞。经典的TGF-β信号传导可激活Smad2和Smad3转录因子,它们通过促进基因表达来控制纤维化。然而,TGF-β-Smad2/3信号传导在成纤维细胞介导的心脏纤维化中的重要性尚未在体内得到直接评估。在此,我们在成纤维细胞和成肌纤维细胞特异性诱导型Cre表达小鼠品系中研究了压力超负荷诱导的心脏纤维化,这些小鼠品系选择性缺失了TGF-β受体Tgfbr1/2、Smad2或Smad3。成纤维细胞特异性缺失Tgfbr1/2或Smad3,而非Smad2,可显著降低压力超负荷诱导的纤维化反应以及由心脏特异性、潜伏抗性TGF-β突变转基因介导的纤维化。有趣的是,心脏成纤维细胞特异性缺失Tgfbr1/2,而非Smad2/3,可减轻对压力超负荷刺激的心脏肥厚反应。从机制上讲,组织驻留成纤维细胞中Smad2/3的缺失减弱了损伤诱导的心脏内细胞扩张以及纤维化介导基因的表达。从心脏成纤维细胞中缺失Smad2/3或Tgfbr1/2同样抑制了纤维化和细胞外基质重塑的基因程序,尽管缺失Tgfbr1/2独特地改变了一系列参与心肌细胞稳态和疾病代偿的调节基因的表达。这些发现表明,活化的组织驻留心脏成纤维细胞中的TGF-β-Smad2/3信号传导是纤维化反应的主要介质。