Suppr超能文献

应激颗粒转录组揭示了应激颗粒中mRNA积累的原理。

The Stress Granule Transcriptome Reveals Principles of mRNA Accumulation in Stress Granules.

作者信息

Khong Anthony, Matheny Tyler, Jain Saumya, Mitchell Sarah F, Wheeler Joshua R, Parker Roy

机构信息

Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA.

Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA.

出版信息

Mol Cell. 2017 Nov 16;68(4):808-820.e5. doi: 10.1016/j.molcel.2017.10.015. Epub 2017 Nov 9.

Abstract

Stress granules are mRNA-protein assemblies formed from nontranslating mRNAs. Stress granules are important in the stress response and may contribute to some degenerative diseases. Here, we describe the stress granule transcriptome of yeast and mammalian cells through RNA-sequencing (RNA-seq) analysis of purified stress granule cores and single-molecule fluorescence in situ hybridization (smFISH) validation. While essentially every mRNA, and some noncoding RNAs (ncRNAs), can be targeted to stress granules, the targeting efficiency varies from <1% to >95%. mRNA accumulation in stress granules correlates with longer coding and UTR regions and poor translatability. Quantifying the RNA-seq analysis by smFISH reveals that only 10% of bulk mRNA molecules accumulate in mammalian stress granules and that only 185 genes have more than 50% of their mRNA molecules in stress granules. These results suggest that stress granules may not represent a specific biological program of messenger ribonucleoprotein (mRNP) assembly, but instead form by condensation of nontranslating mRNPs in proportion to their length and lack of association with ribosomes.

摘要

应激颗粒是由非翻译mRNA形成的mRNA-蛋白质聚集体。应激颗粒在应激反应中很重要,可能与某些退行性疾病有关。在这里,我们通过对纯化的应激颗粒核心进行RNA测序(RNA-seq)分析和单分子荧光原位杂交(smFISH)验证,描述了酵母和哺乳动物细胞的应激颗粒转录组。虽然基本上每个mRNA以及一些非编码RNA(ncRNA)都可以靶向应激颗粒,但靶向效率从小于1%到大于95%不等。应激颗粒中的mRNA积累与较长的编码区和UTR区域以及较差的可翻译性相关。通过smFISH对RNA-seq分析进行定量显示,只有10%的大量mRNA分子积聚在哺乳动物应激颗粒中,并且只有185个基因的mRNA分子有超过50%存在于应激颗粒中。这些结果表明,应激颗粒可能并不代表信使核糖核蛋白(mRNP)组装的特定生物学程序,而是由非翻译mRNP根据其长度和与核糖体的缺乏关联程度通过凝聚形成的。

相似文献

1
The Stress Granule Transcriptome Reveals Principles of mRNA Accumulation in Stress Granules.
Mol Cell. 2017 Nov 16;68(4):808-820.e5. doi: 10.1016/j.molcel.2017.10.015. Epub 2017 Nov 9.
2
RNA self-assembly contributes to stress granule formation and defining the stress granule transcriptome.
Proc Natl Acad Sci U S A. 2018 Mar 13;115(11):2734-2739. doi: 10.1073/pnas.1800038115. Epub 2018 Feb 26.
3
P bodies promote stress granule assembly in Saccharomyces cerevisiae.
J Cell Biol. 2008 Nov 3;183(3):441-55. doi: 10.1083/jcb.200807043.
4
Analyzing P-bodies and stress granules in Saccharomyces cerevisiae.
Methods Enzymol. 2010;470:619-40. doi: 10.1016/S0076-6879(10)70025-2. Epub 2010 Mar 1.
5
Eukaryotic stress granules are cleared by autophagy and Cdc48/VCP function.
Cell. 2013 Jun 20;153(7):1461-74. doi: 10.1016/j.cell.2013.05.037.
7
Multicolour single-molecule tracking of mRNA interactions with RNP granules.
Nat Cell Biol. 2019 Feb;21(2):162-168. doi: 10.1038/s41556-018-0263-4. Epub 2019 Jan 21.
8
mRNP architecture in translating and stress conditions reveals an ordered pathway of mRNP compaction.
J Cell Biol. 2018 Dec 3;217(12):4124-4140. doi: 10.1083/jcb.201806183. Epub 2018 Oct 15.
9
Single mRNP Analysis Reveals that Small Cytoplasmic mRNP Granules Represent mRNA Singletons.
Cell Rep. 2019 Oct 15;29(3):736-748.e4. doi: 10.1016/j.celrep.2019.09.018.
10
Systematic Characterization of Stress-Induced RNA Granulation.
Mol Cell. 2018 Apr 5;70(1):175-187.e8. doi: 10.1016/j.molcel.2018.02.025. Epub 2018 Mar 22.

引用本文的文献

1
Transient Formation of Stress Granules Disturbs Neural Stem Cell Differentiation.
Neurosci Bull. 2025 Sep 12. doi: 10.1007/s12264-025-01503-3.
2
Uncovering the Epitranscriptome: A Review on mRNA Modifications and Emerging Frontiers.
Genes (Basel). 2025 Aug 12;16(8):951. doi: 10.3390/genes16080951.
3
Aggresomes protect mRNA under stress in Escherichia coli.
Nat Microbiol. 2025 Aug 19. doi: 10.1038/s41564-025-02086-5.
4
Biomolecular condensates in plant immunity.
Cell Host Microbe. 2025 Aug 13;33(8):1276-1290. doi: 10.1016/j.chom.2025.06.014.
7
Multi-Faceted Roles of Stress Granules in Viral Infection.
Microorganisms. 2025 Jun 20;13(7):1434. doi: 10.3390/microorganisms13071434.
9
Impact of G-tract RNAs and the DHX36 helicase on stress granule composition and formation.
bioRxiv. 2025 Jun 17:2025.06.16.659950. doi: 10.1101/2025.06.16.659950.
10
Stress granule assembly impairs macrophage efferocytosis to aggravate allergic rhinitis in mice.
Nat Commun. 2025 Jul 1;16(1):5610. doi: 10.1038/s41467-025-60920-0.

本文引用的文献

2
Mechanistic insights into mammalian stress granule dynamics.
J Cell Biol. 2016 Nov 7;215(3):313-323. doi: 10.1083/jcb.201609081.
3
Distinct stages in stress granule assembly and disassembly.
Elife. 2016 Sep 7;5:e18413. doi: 10.7554/eLife.18413.
4
Cotranslational signal-independent SRP preloading during membrane targeting.
Nature. 2016 Aug 11;536(7615):224-8. doi: 10.1038/nature19309. Epub 2016 Aug 3.
6
The Ensembl gene annotation system.
Database (Oxford). 2016 Jun 23;2016. doi: 10.1093/database/baw093. Print 2016.
7
Principles and Properties of Stress Granules.
Trends Cell Biol. 2016 Sep;26(9):668-679. doi: 10.1016/j.tcb.2016.05.004. Epub 2016 Jun 9.
8
Connections Underlying Translation and mRNA Stability.
J Mol Biol. 2016 Sep 11;428(18):3558-64. doi: 10.1016/j.jmb.2016.05.025. Epub 2016 May 31.
9
G3BP-Caprin1-USP10 complexes mediate stress granule condensation and associate with 40S subunits.
J Cell Biol. 2016 Mar 28;212(7):845-60. doi: 10.1083/jcb.201508028.
10
Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP).
Nat Methods. 2016 Jun;13(6):508-14. doi: 10.1038/nmeth.3810. Epub 2016 Mar 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验