Suppr超能文献

RNA 自组装有助于应激颗粒的形成,并定义应激颗粒的转录组。

RNA self-assembly contributes to stress granule formation and defining the stress granule transcriptome.

机构信息

Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, CO 80309.

Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80309.

出版信息

Proc Natl Acad Sci U S A. 2018 Mar 13;115(11):2734-2739. doi: 10.1073/pnas.1800038115. Epub 2018 Feb 26.

Abstract

Stress granules are higher order assemblies of nontranslating mRNAs and proteins that form when translation initiation is inhibited. Stress granules are thought to form by protein-protein interactions of RNA-binding proteins. We demonstrate RNA homopolymers or purified cellular RNA forms assemblies in vitro analogous to stress granules. Remarkably, under conditions representative of an intracellular stress response, the mRNAs enriched in assemblies from total yeast RNA largely recapitulate the stress granule transcriptome. We suggest stress granules are formed by a summation of protein-protein and RNA-RNA interactions, with RNA self-assembly likely to contribute to other RNP assemblies wherever there is a high local concentration of RNA. RNA assembly in vitro is also increased by GR and PR dipeptide repeats, which are known to increase stress granule formation in cells. Since GR and PR dipeptides are involved in neurodegenerative diseases, this suggests that perturbations increasing RNA-RNA assembly in cells could lead to disease.

摘要

应激颗粒是在翻译起始受到抑制时形成的非翻译 mRNA 和蛋白质的高级组装体。应激颗粒被认为是通过 RNA 结合蛋白的蛋白质-蛋白质相互作用形成的。我们证明了 RNA 同聚体或纯化的细胞 RNA 在体外形成类似于应激颗粒的组装体。值得注意的是,在代表细胞内应激反应的条件下,总酵母 RNA 中富含组装体的 mRNAs 在很大程度上重现了应激颗粒转录组。我们认为应激颗粒是通过蛋白质-蛋白质和 RNA-RNA 相互作用的总和形成的,并且 RNA 自组装可能有助于在 RNA 局部浓度高的任何地方形成其他 RNP 组装体。体外 RNA 组装也被 GR 和 PR 二肽重复所增加,已知 GR 和 PR 二肽重复会增加细胞中的应激颗粒形成。由于 GR 和 PR 二肽参与神经退行性疾病,这表明增加细胞中 RNA-RNA 组装的干扰可能导致疾病。

相似文献

1
RNA self-assembly contributes to stress granule formation and defining the stress granule transcriptome.
Proc Natl Acad Sci U S A. 2018 Mar 13;115(11):2734-2739. doi: 10.1073/pnas.1800038115. Epub 2018 Feb 26.
2
The Stress Granule Transcriptome Reveals Principles of mRNA Accumulation in Stress Granules.
Mol Cell. 2017 Nov 16;68(4):808-820.e5. doi: 10.1016/j.molcel.2017.10.015. Epub 2017 Nov 9.
3
Analyzing P-bodies and stress granules in Saccharomyces cerevisiae.
Methods Enzymol. 2010;470:619-40. doi: 10.1016/S0076-6879(10)70025-2. Epub 2010 Mar 1.
4
Stress-specific composition, assembly and kinetics of stress granules in Saccharomyces cerevisiae.
J Cell Sci. 2011 Jan 15;124(Pt 2):228-39. doi: 10.1242/jcs.078444. Epub 2010 Dec 15.
5
P bodies promote stress granule assembly in Saccharomyces cerevisiae.
J Cell Biol. 2008 Nov 3;183(3):441-55. doi: 10.1083/jcb.200807043.
6
Distinct stages in stress granule assembly and disassembly.
Elife. 2016 Sep 7;5:e18413. doi: 10.7554/eLife.18413.
7
Yeast Gis2 and its human ortholog CNBP are novel components of stress-induced RNP granules.
PLoS One. 2012;7(12):e52824. doi: 10.1371/journal.pone.0052824. Epub 2012 Dec 21.
8
Yeast processing bodies and stress granules: self-assembly ribonucleoprotein particles.
Microb Cell Fact. 2011 Sep 24;10:73. doi: 10.1186/1475-2859-10-73.
10
Relationship of GW/P-bodies with stress granules.
Adv Exp Med Biol. 2013;768:197-211. doi: 10.1007/978-1-4614-5107-5_12.

引用本文的文献

2
Impact of G-tract RNAs and the DHX36 helicase on stress granule composition and formation.
bioRxiv. 2025 Jun 17:2025.06.16.659950. doi: 10.1101/2025.06.16.659950.
4
Transcription arrest induces formation of RNA granules in mitochondria.
Life Sci Alliance. 2025 Jun 16;8(9). doi: 10.26508/lsa.202403082. Print 2025 Sep.
5
Biomolecular condensates-Prerequisites for anhydrobiosis?
Protein Sci. 2025 Jul;34(7):e70192. doi: 10.1002/pro.70192.
6
Biomolecular condensates control and are defined by RNA-RNA interactions that arise in viral replication.
Res Sq. 2025 May 13:rs.3.rs-6378534. doi: 10.21203/rs.3.rs-6378534/v1.
7
Liquid-liquid phase separation of membrane-less condensates: from biogenesis to function.
Front Cell Dev Biol. 2025 May 14;13:1600430. doi: 10.3389/fcell.2025.1600430. eCollection 2025.
8
Ribosome association inhibits stress-induced gene mRNA localization to stress granules.
Genes Dev. 2025 Jul 1;39(13-14):826-848. doi: 10.1101/gad.352899.125.
9
Stress granules: emerging players in neurodegenerative diseases.
Transl Neurodegener. 2025 May 12;14(1):22. doi: 10.1186/s40035-025-00482-9.
10
Sequence-encoded intermolecular base pairing modulates fluidity in DNA and RNA condensates.
Nat Commun. 2025 May 7;16(1):4258. doi: 10.1038/s41467-025-59456-0.

本文引用的文献

1
ALS/FTD-Associated C9ORF72 Repeat RNA Promotes Phase Transitions In Vitro and in Cells.
Cell Rep. 2017 Dec 19;21(12):3573-3584. doi: 10.1016/j.celrep.2017.11.093.
2
The Stress Granule Transcriptome Reveals Principles of mRNA Accumulation in Stress Granules.
Mol Cell. 2017 Nov 16;68(4):808-820.e5. doi: 10.1016/j.molcel.2017.10.015. Epub 2017 Nov 9.
4
RNA phase transitions in repeat expansion disorders.
Nature. 2017 Jun 8;546(7657):243-247. doi: 10.1038/nature22386. Epub 2017 May 31.
5
Demethylated HSATII DNA and HSATII RNA Foci Sequester PRC1 and MeCP2 into Cancer-Specific Nuclear Bodies.
Cell Rep. 2017 Mar 21;18(12):2943-2956. doi: 10.1016/j.celrep.2017.02.072.
6
Phase Separation of C9orf72 Dipeptide Repeats Perturbs Stress Granule Dynamics.
Mol Cell. 2017 Mar 16;65(6):1044-1055.e5. doi: 10.1016/j.molcel.2017.02.013.
7
Toxic PR poly-dipeptides encoded by the repeat expansion block nuclear import and export.
Proc Natl Acad Sci U S A. 2017 Feb 14;114(7):E1111-E1117. doi: 10.1073/pnas.1620293114. Epub 2017 Jan 9.
8
Toxic PR Poly-Dipeptides Encoded by the C9orf72 Repeat Expansion Target LC Domain Polymers.
Cell. 2016 Oct 20;167(3):789-802.e12. doi: 10.1016/j.cell.2016.10.003.
9
RNA-Based Coacervates as a Model for Membraneless Organelles: Formation, Properties, and Interfacial Liposome Assembly.
Langmuir. 2016 Oct 4;32(39):10042-10053. doi: 10.1021/acs.langmuir.6b02499. Epub 2016 Sep 21.
10
G3BP-Caprin1-USP10 complexes mediate stress granule condensation and associate with 40S subunits.
J Cell Biol. 2016 Mar 28;212(7):845-60. doi: 10.1083/jcb.201508028.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验