Suppr超能文献

人类蛋白质组中赖氨酸反应性和配体结合能力的全局分析。

Global profiling of lysine reactivity and ligandability in the human proteome.

机构信息

Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92307, USA.

Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92307, USA.

出版信息

Nat Chem. 2017 Dec;9(12):1181-1190. doi: 10.1038/nchem.2826. Epub 2017 Jul 31.

Abstract

Nucleophilic amino acids make important contributions to protein function, including performing key roles in catalysis and serving as sites for post-translational modification. Electrophilic groups that target amino-acid nucleophiles have been used to create covalent ligands and drugs, but have, so far, been mainly limited to cysteine and serine. Here, we report a chemical proteomic platform for the global and quantitative analysis of lysine residues in native biological systems. We have quantified, in total, more than 9,000 lysines in human cell proteomes and have identified several hundred residues with heightened reactivity that are enriched at protein functional sites and can frequently be targeted by electrophilic small molecules. We have also discovered lysine-reactive fragment electrophiles that inhibit enzymes by active site and allosteric mechanisms, as well as disrupt protein-protein interactions in transcriptional regulatory complexes, emphasizing the broad potential and diverse functional consequences of liganding lysine residues throughout the human proteome.

摘要

亲核氨基酸对蛋白质功能有重要贡献,包括在催化中发挥关键作用,以及作为翻译后修饰的位点。靶向氨基酸亲核试剂的亲电基团已被用于构建共价配体和药物,但迄今为止,主要限于半胱氨酸和丝氨酸。在这里,我们报告了一个用于在天然生物系统中全局和定量分析赖氨酸残基的化学蛋白质组学平台。我们总共定量了人类细胞蛋白质组中超过 9000 个赖氨酸,并鉴定了数百个反应性增强的残基,这些残基富集在蛋白质功能位点,并且可以经常被亲电子小分子靶向。我们还发现了通过活性位点和别构机制抑制酶的赖氨酸反应性片段亲电试剂,以及破坏转录调节复合物中的蛋白质-蛋白质相互作用,强调了在整个人类蛋白质组中配体赖氨酸残基的广泛潜力和多样化功能后果。

相似文献

1
Global profiling of lysine reactivity and ligandability in the human proteome.
Nat Chem. 2017 Dec;9(12):1181-1190. doi: 10.1038/nchem.2826. Epub 2017 Jul 31.
2
A proteome-wide atlas of lysine-reactive chemistry.
Nat Chem. 2021 Nov;13(11):1081-1092. doi: 10.1038/s41557-021-00765-4. Epub 2021 Sep 9.
3
Applications of Reactive Cysteine Profiling.
Curr Top Microbiol Immunol. 2019;420:375-417. doi: 10.1007/82_2018_120.
5
Investigating the proteome reactivity and selectivity of aryl halides.
J Am Chem Soc. 2014 Mar 5;136(9):3330-3. doi: 10.1021/ja4116204. Epub 2014 Feb 24.
6
Direct mapping of ligandable tyrosines and lysines in cells with chiral sulfonyl fluoride probes.
Nat Chem. 2023 Nov;15(11):1616-1625. doi: 10.1038/s41557-023-01281-3. Epub 2023 Jul 17.
7
Lysine-Targeted Inhibitors and Chemoproteomic Probes.
Annu Rev Biochem. 2019 Jun 20;88:365-381. doi: 10.1146/annurev-biochem-061516-044805. Epub 2019 Jan 11.
8
Biomimetic Synthesis and Chemical Proteomics Reveal the Mechanism of Action and Functional Targets of Phloroglucinol Meroterpenoids.
J Am Chem Soc. 2024 Jan 31;146(4):2524-2548. doi: 10.1021/jacs.3c10741. Epub 2024 Jan 17.
9
Chemical proteomic identification of functional cysteines with atypical electrophile reactivities.
Tetrahedron Lett. 2021 Mar 16;67. doi: 10.1016/j.tetlet.2021.152861. Epub 2021 Feb 4.

引用本文的文献

1
Targeted Protein Modification with an Antibody-Based System.
ACS Cent Sci. 2025 Jul 7;11(8):1364-1376. doi: 10.1021/acscentsci.5c00651. eCollection 2025 Aug 27.
2
Structure-based rational design of covalent probes.
Commun Chem. 2025 Aug 12;8(1):242. doi: 10.1038/s42004-025-01606-y.
3
Design, Computational Assessment, and Experimental Characterization of a Self-Assembling Peptide Hydrogel.
ACS Appl Bio Mater. 2025 Aug 18;8(8):6772-6783. doi: 10.1021/acsabm.5c00285. Epub 2025 Aug 4.
4
Lab-in-Syringe Automated Miniaturized Bioconjugation of Magnetic Beads with Anti-SARS-CoV2 Antibodies.
ACS Omega. 2025 Jul 21;10(29):31359-31367. doi: 10.1021/acsomega.4c11126. eCollection 2025 Jul 29.
6
Peroxynitrite-Activated Conditional Chemical Probe for the Affinity-Based Protein Modification.
Anal Chem. 2025 Jul 22;97(28):14912-14920. doi: 10.1021/acs.analchem.4c05580. Epub 2025 Jul 10.
7
Activity-Based Protein Profiling for Functional Cysteines and Protein Target Identification.
Methods Mol Biol. 2025;2921:331-344. doi: 10.1007/978-1-0716-4502-4_18.
8
Computational Design of Lysine Targeting Covalent Binders Using Rosetta.
J Chem Inf Model. 2025 May 29. doi: 10.1021/acs.jcim.5c00212.
10
Prioritizing disease-associated missense variants with chemoproteomic-detected amino acids.
Am J Hum Genet. 2025 Jul 3;112(7):1649-1663. doi: 10.1016/j.ajhg.2025.04.017. Epub 2025 May 23.

本文引用的文献

1
Targeted interference of SIN3A-TGIF1 function by SID decoy treatment inhibits Wnt signaling and invasion in triple negative breast cancer cells.
Oncotarget. 2016 Aug 19;8(51):88421-88436. doi: 10.18632/oncotarget.11381. eCollection 2017 Oct 24.
2
NHS-Esters As Versatile Reactivity-Based Probes for Mapping Proteome-Wide Ligandable Hotspots.
ACS Chem Biol. 2017 Jun 16;12(6):1478-1483. doi: 10.1021/acschembio.7b00125. Epub 2017 May 1.
3
Chemoproteomic Screening of Covalent Ligands Reveals UBA5 As a Novel Pancreatic Cancer Target.
ACS Chem Biol. 2017 Apr 21;12(4):899-904. doi: 10.1021/acschembio.7b00020. Epub 2017 Feb 15.
4
Mapping Proteome-wide Targets of Glyphosate in Mice.
Cell Chem Biol. 2017 Feb 16;24(2):133-140. doi: 10.1016/j.chembiol.2016.12.013. Epub 2017 Jan 26.
5
Broad-Spectrum Kinase Profiling in Live Cells with Lysine-Targeted Sulfonyl Fluoride Probes.
J Am Chem Soc. 2017 Jan 18;139(2):680-685. doi: 10.1021/jacs.6b08536. Epub 2017 Jan 4.
6
Chemical proteomic map of dimethyl fumarate-sensitive cysteines in primary human T cells.
Sci Signal. 2016 Sep 13;9(445):rs10. doi: 10.1126/scisignal.aaf7694.
7
Inhibition of Mcl-1 through covalent modification of a noncatalytic lysine side chain.
Nat Chem Biol. 2016 Nov;12(11):931-936. doi: 10.1038/nchembio.2174. Epub 2016 Sep 5.
8
AutoSite: an automated approach for pseudo-ligands prediction-from ligand-binding sites identification to predicting key ligand atoms.
Bioinformatics. 2016 Oct 15;32(20):3142-3149. doi: 10.1093/bioinformatics/btw367. Epub 2016 Jun 26.
9
Proteome-wide covalent ligand discovery in native biological systems.
Nature. 2016 Jun 23;534(7608):570-4. doi: 10.1038/nature18002. Epub 2016 Jun 15.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验