Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China.
School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China.
Pest Manag Sci. 2018 Aug;74(8):1870-1879. doi: 10.1002/ps.4889. Epub 2018 Mar 30.
Descurainia sophia L., a problematic weed in winter wheat fields in China, has developed high resistance to tribenuron-methyl. Amino acid substitutions at sites Pro197, Asp376 and Trp574 in the target acetohydroxyacid synthase (AHAS) were primarily responsible for D. sophia resistance to tribenuron-methyl. In this study, purified subpopulations of D. sophia plants individually homozygous for a specific resistance mutation (Pro197Leu, Pro197His, Pro197Ser, Pro197Thr, Asp376Glu or Trp574Leu) in AHAS were generated, and the effects of resistance mutations on D. sophia resistance and AHAS characteristics were investigated.
All resistance mutations in this study not only caused D. sophia to evolve 152- to 811-fold resistance to tribenuron-methyl but also greatly reduced AHAS sensitivity to tribenuron-methyl and increased AHAS binding affinity for the substrate pyruvate, which was primarily responsible for D. sophia resistance. The molecular docking results indicated that these resistance mutations altered AHAS binding affinity for tribenuron-methyl by reducing the hydrogen bonds and changing hydrophobic interactions. Compared with the wild-type AHAS, these resistance mutations exhibited no significant effects on AHAS feedback inhibition by branched-chain amino acids (BCAAs) at concentrations <0.08 mm. The altered AHAS sensitivity to feedback inhibition by BCAAs did not necessarily increase or decrease the free BCAAs in resistant D. sophia plants.
The AHAS resistance mutations conferred D. sophia resistance to tribenuron-methyl by decreasing the binding affinity for tribenuron-methyl and/or increasing the binding affinity for pyruvate, but the mutations did not necessarily affect the biosynthesis of BCAAs in plants. © 2018 Society of Chemical Industry.
播娘蒿是中国冬小麦田中的一种难以防治的杂草,已对啶磺草胺产生了高度抗性。靶标乙酰羟酸合酶(AHAS)中 Pro197、Asp376 和 Trp574 位点的氨基酸取代是播娘蒿对啶磺草胺产生抗性的主要原因。本研究中,通过基因编辑技术生成了 AHAS 中具有特定抗性突变(Pro197Leu、Pro197His、Pro197Ser、Pro197Thr、Asp376Glu 或 Trp574Leu)的纯合个体,研究了抗性突变对播娘蒿抗性和 AHAS 特征的影响。
本研究中的所有抗性突变不仅导致播娘蒿对啶磺草胺产生 152-811 倍的抗性,还极大地降低了 AHAS 对啶磺草胺的敏感性,并增加了 AHAS 对底物丙酮酸的结合亲和力,这是播娘蒿产生抗性的主要原因。分子对接结果表明,这些抗性突变通过减少氢键和改变疏水性相互作用来改变 AHAS 与啶磺草胺的结合亲和力。与野生型 AHAS 相比,这些抗性突变对浓度 <0.08mm 的支链氨基酸(BCAAs)对 AHAS 的反馈抑制没有显著影响。AHAS 对 BCAAs 反馈抑制的敏感性改变不一定会增加或减少抗性播娘蒿植物中游离的 BCAAs。
AHAS 抗性突变通过降低与啶磺草胺的结合亲和力和/或增加与丙酮酸的结合亲和力赋予播娘蒿对啶磺草胺的抗性,但突变不一定会影响植物中 BCAAs 的生物合成。 © 2018 英国化学学会。