Suppr超能文献

高血压中的血管 Nox(NADPH 氧化酶)区室化、蛋白过度氧化和内质网应激反应。

Vascular Nox (NADPH Oxidase) Compartmentalization, Protein Hyperoxidation, and Endoplasmic Reticulum Stress Response in Hypertension.

机构信息

From the Institute of Cardiovascular and Medical Sciences (L.L.C., A.P.H., F.J.R., S.T., D.G., A.C.M., R.M.T.).

Institute of Biomedical Sciences, University of Sao Paulo, Brazil (R.d.N.O.D.S.).

出版信息

Hypertension. 2018 Jul;72(1):235-246. doi: 10.1161/HYPERTENSIONAHA.118.10824. Epub 2018 May 29.

Abstract

Vascular Nox (NADPH oxidase)-derived reactive oxygen species and endoplasmic reticulum (ER) stress have been implicated in hypertension. However, relationships between these processes are unclear. We hypothesized that Nox isoforms localize in a subcellular compartment-specific manner, contributing to oxidative and ER stress, which influence the oxidative proteome and vascular function in hypertension. Nox compartmentalization (cell fractionation), O (lucigenin), HO (amplex red), reversible protein oxidation (sulfenylation), irreversible protein oxidation (protein tyrosine phosphatase, peroxiredoxin oxidation), and ER stress (PERK [protein kinase RNA-like endoplasmic reticulum kinase], IRE1α [inositol-requiring enzyme 1], and phosphorylation/oxidation) were studied in spontaneously hypertensive rat (SHR) vascular smooth muscle cells (VSMCs). VSMC proliferation was measured by fluorescence-activated cell sorting, and vascular reactivity assessed in stroke-prone SHR arteries by myography. Noxs were downregulated by short interfering RNA and pharmacologically. In SHR, Noxs were localized in specific subcellular regions: Nox1 in plasma membrane and Nox4 in ER. In SHR, oxidative stress was associated with increased protein sulfenylation and hyperoxidation of protein tyrosine phosphatases and peroxiredoxins. Inhibition of Nox1 (NoxA1ds), Nox1/4 (GKT137831), and ER stress (4-phenylbutyric acid/tauroursodeoxycholic acid) normalized SHR vascular reactive oxygen species generation. GKT137831 reduced IRE1α sulfenylation and XBP1 (X-box binding protein 1) splicing in SHR. Increased VSMC proliferation in SHR was normalized by GKT137831, 4-phenylbutyric acid, and STF083010 (IRE1-XBP1 disruptor). Hypercontractility in the stroke-prone SHR was attenuated by 4-phenylbutyric acid. We demonstrate that protein hyperoxidation in hypertension is associated with oxidative and ER stress through upregulation of plasmalemmal-Nox1 and ER-Nox4. The IRE1-XBP1 pathway of the ER stress response is regulated by Nox4/reactive oxygen species and plays a role in the hyperproliferative VSMC phenotype in SHR. Our study highlights the importance of Nox subcellular compartmentalization and interplay between cytoplasmic reactive oxygen species and ER stress response, which contribute to the VSMC oxidative proteome and vascular dysfunction in hypertension.

摘要

血管型 Nox(NADPH 氧化酶)衍生的活性氧和内质网(ER)应激与高血压有关。然而,这些过程之间的关系尚不清楚。我们假设 Nox 同工型以细胞区室特异性的方式定位,导致氧化和 ER 应激,从而影响高血压中的氧化蛋白质组和血管功能。使用自发性高血压大鼠(SHR)血管平滑肌细胞(VSMC)研究了 Nox 区室化(细胞分级分离)、O(荧光素)、HO(安普乐红)、可逆蛋白氧化(亚磺化)、不可逆蛋白氧化(蛋白酪氨酸磷酸酶、过氧化物酶氧化)和 ER 应激(蛋白激酶 RNA 样内质网激酶(PERK)、肌醇需求酶 1(IRE1α)和磷酸化/氧化)。通过荧光激活细胞分选测量 VSMC 增殖,并用肌描记术评估易中风 SHR 动脉的血管反应性。通过短干扰 RNA 和药理学下调 Nox。在 SHR 中,Nox 定位于特定的细胞区室:Nox1 在质膜中,Nox4 在 ER 中。在 SHR 中,氧化应激与蛋白酪氨酸磷酸酶和过氧化物酶的亚磺化和过度氧化增加有关。Nox1(NoxA1ds)、Nox1/4(GKT137831)和 ER 应激(4-苯基丁酸/牛磺熊脱氧胆酸)的抑制使 SHR 血管活性氧的产生正常化。GKT137831 减少了 SHR 中 IRE1α 的亚磺化和 XBP1(X 盒结合蛋白 1)剪接。GKT137831、4-苯基丁酸和 STF083010(IRE1-XBP1 破坏剂)使 SHR 中 VSMC 的增殖增加正常化。易中风 SHR 中的高收缩性通过 4-苯基丁酸减弱。我们证明,高血压中的蛋白过度氧化与氧化和 ER 应激有关,这是通过上调质膜 Nox1 和 ER-Nox4 引起的。内质网应激反应的 IRE1-XBP1 途径受 Nox4/活性氧调节,并在 SHR 中高增殖性 VSMC 表型中发挥作用。我们的研究强调了 Nox 细胞区室化的重要性以及细胞质活性氧和 ER 应激反应之间的相互作用,这有助于高血压中的 VSMC 氧化蛋白质组和血管功能障碍。

相似文献

1
Vascular Nox (NADPH Oxidase) Compartmentalization, Protein Hyperoxidation, and Endoplasmic Reticulum Stress Response in Hypertension.
Hypertension. 2018 Jul;72(1):235-246. doi: 10.1161/HYPERTENSIONAHA.118.10824. Epub 2018 May 29.
2
Asprosin contributes to vascular remodeling in hypertensive rats via superoxide signaling.
J Hypertens. 2024 Aug 1;42(8):1427-1439. doi: 10.1097/HJH.0000000000003751. Epub 2024 Apr 22.
6
Suppression of endoplasmic reticulum stress improves endothelium-dependent contractile responses in aorta of the spontaneously hypertensive rat.
Am J Physiol Heart Circ Physiol. 2013 Aug 1;305(3):H344-53. doi: 10.1152/ajpheart.00952.2012. Epub 2013 May 24.
10
Epidermal growth factor receptor transactivation by endogenous vasoactive peptides contributes to hyperproliferation of vascular smooth muscle cells of SHR.
Am J Physiol Heart Circ Physiol. 2010 Dec;299(6):H1959-67. doi: 10.1152/ajpheart.00526.2010. Epub 2010 Sep 17.

引用本文的文献

1
2
Comprehensive mini-review: therapeutic potential of cannabigerol - focus on the cardiovascular system.
Front Pharmacol. 2025 Mar 26;16:1561385. doi: 10.3389/fphar.2025.1561385. eCollection 2025.
3
Interplay between energy metabolism and NADPH oxidase-mediated pathophysiology in cardiovascular diseases.
Front Pharmacol. 2025 Jan 10;15:1503824. doi: 10.3389/fphar.2024.1503824. eCollection 2024.
4
Reactive Oxygen Species, a Potential Therapeutic Target for Vascular Dementia.
Biomolecules. 2024 Dec 25;15(1):6. doi: 10.3390/biom15010006.
5
NADPH oxidases: redox regulation of cell homeostasis and disease.
Physiol Rev. 2025 Jul 1;105(3):1291-1428. doi: 10.1152/physrev.00034.2023. Epub 2025 Jan 15.
6
Oxidative Stress in Kidney Injury and Hypertension.
Antioxidants (Basel). 2024 Nov 27;13(12):1454. doi: 10.3390/antiox13121454.
7
Emerging role of IRE1α in vascular diseases.
J Cell Commun Signal. 2024 Nov 10;18(4):e12056. doi: 10.1002/ccs3.12056. eCollection 2024 Dec.
8
Oxidative DNA Damage and Arterial Hypertension in Light of Current ESC Guidelines.
Int J Mol Sci. 2024 Nov 22;25(23):12557. doi: 10.3390/ijms252312557.
9
Reactive oxygen species in hypertension.
Nat Rev Cardiol. 2025 Jan;22(1):20-37. doi: 10.1038/s41569-024-01062-6. Epub 2024 Jul 24.
10
Involvement of Reactive Oxygen Species in Prostate Cancer and Its Disparity in African Descendants.
Int J Mol Sci. 2024 Jun 17;25(12):6665. doi: 10.3390/ijms25126665.

本文引用的文献

1
The Role of Endoplasmic Reticulum Stress in Cardiovascular Disease and Exercise.
Int J Vasc Med. 2017;2017:2049217. doi: 10.1155/2017/2049217. Epub 2017 Aug 10.
2
Endogenous, regulatory cysteine sulfenylation of ERK kinases in response to proliferative signals.
Free Radic Biol Med. 2017 Nov;112:534-543. doi: 10.1016/j.freeradbiomed.2017.08.018. Epub 2017 Aug 24.
3
Hyperoxidation of Peroxiredoxins: Gain or Loss of Function?
Antioxid Redox Signal. 2018 Mar 1;28(7):574-590. doi: 10.1089/ars.2017.7214. Epub 2017 Sep 8.
4
Emerging roles of ER stress and unfolded protein response pathways in skeletal muscle health and disease.
J Cell Physiol. 2018 Jan;233(1):67-78. doi: 10.1002/jcp.25852. Epub 2017 May 16.
6
A Cell-Permeable Biscyclooctyne As a Novel Probe for the Identification of Protein Sulfenic Acids.
ACS Chem Biol. 2016 Dec 16;11(12):3300-3304. doi: 10.1021/acschembio.6b00742. Epub 2016 Nov 11.
7
Cysteine Sulfenylation Directs IRE-1 to Activate the SKN-1/Nrf2 Antioxidant Response.
Mol Cell. 2016 Aug 18;63(4):553-566. doi: 10.1016/j.molcel.2016.07.019.
8
Internal Pudental Artery Dysfunction in Diabetes Mellitus Is Mediated by NOX1-Derived ROS-, Nrf2-, and Rho Kinase-Dependent Mechanisms.
Hypertension. 2016 Oct;68(4):1056-64. doi: 10.1161/HYPERTENSIONAHA.116.07518. Epub 2016 Aug 15.
10
4-Phenylbutyric Acid Induces Protection against Pulmonary Arterial Hypertension in Rats.
PLoS One. 2016 Jun 15;11(6):e0157538. doi: 10.1371/journal.pone.0157538. eCollection 2016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验