Suppr超能文献

光捕获释放光敏剂:将双功能钌配合物与蛋白酶失活相结合用于靶向侵袭性癌症。

Catch and Release Photosensitizers: Combining Dual-Action Ruthenium Complexes with Protease Inactivation for Targeting Invasive Cancers.

机构信息

Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States.

Department of Pharmacology, School of Medicine , Wayne State University , Detroit , Michigan 48201 , United States.

出版信息

J Am Chem Soc. 2018 Oct 31;140(43):14367-14380. doi: 10.1021/jacs.8b08853. Epub 2018 Oct 22.

Abstract

Dual action agents containing a cysteine protease inhibitor and Ru-based photosensitizer for photodynamic therapy (PDT) were designed, synthesized, and validated in 2D culture and 3D functional imaging assays of triple-negative human breast cancer (TNBC). These combination agents deliver and release Ru-based PDT agents to tumor cells and cause cancer cell death upon irradiation with visible light, while at the same time inactivating cathespin B (CTSB), a cysteine protease strongly associated with invasive and metastatic behavior. In total five Ru-based complexes were synthesized with the formula Ru(bpy)(1) (3), where bpy = 2,2'-bipyridine and 1 = a bipyridine-based epoxysuccinyl inhibitor; Ru(tpy)(NN)(2), where tpy = terpiridine, 2 = a pyridine-based epoxysuccinyl inhibitor and NN = 2,2'-bipyridine (4); 6,6'-dimethyl-2,2'-bipyridine (5); benzo[ i]dipyrido[3,2- a:2',3'- c]phenazine (6); and 3,6-dimethylbenzo[ i]dipyrido[3,2- a:2',3'- c]phenazine (7). Compound 3 contains a [Ru(bpy)] fluorophore and was designed to track the subcellular localization of the conjugates, whereas compounds 4-7 were designed to undergo either photoactivated ligand dissociation and/or singlet oxygen generation. Photochemical studies confirmed that complexes 5 and 7 undergo photoactivated ligand dissociation, whereas 6 and 7 generate singlet oxygen. Inhibitors 1-7 all potently and irreversibly inhibit CTSB. Compounds 4-7 were evaluated against MDA-MB-231 TNBC and MCF-10A breast epithelial cells in 2D and 3D culture for effects on proteolysis and cell viability under dark and light conditions. Collectively, these data reveal that 4-7 potently inhibit dye-quenched (DQ) collagen degradation, whereas only compound 7 causes efficient cell death under light conditions, consistent with its ability to release a Ru(II)-based photosensitizer and to also generate O.

摘要

设计、合成并验证了含有半胱氨酸蛋白酶抑制剂和 Ru 基光敏剂的双功能药物用于三阴性人乳腺癌(TNBC)的光动力疗法(PDT)。这些联合药物将 Ru 基 PDT 药物递送至肿瘤细胞并在可见光照射下释放,同时使半胱氨酸蛋白酶 B(CTSB)失活,CTSB 与侵袭和转移行为密切相关。共合成了 5 种 Ru 基配合物,其化学式为Ru(bpy)(1)(3),其中 bpy = 2,2'-联吡啶,1 = 基于联吡啶的环氧琥珀酰抑制剂;Ru(tpy)(NN)(2),其中 tpy = 三吡啶,2 = 基于吡啶的环氧琥珀酰抑制剂,NN = 2,2'-联吡啶(4);6,6'-二甲基-2,2'-联吡啶(5);苯并[ i]二吡啶并[3,2- a:2',3'- c]吩嗪(6);和 3,6-二甲基苯并[ i]二吡啶并[3,2- a:2',3'- c]吩嗪(7)。化合物 3 含有 [Ru(bpy)]荧光团,用于跟踪缀合物的亚细胞定位,而化合物 4-7 则用于光激活配体解离和/或单线态氧生成。光化学研究证实,配合物 5 和 7 发生光激活配体解离,而 6 和 7 生成单线态氧。抑制剂 1-7 均能强烈且不可逆地抑制 CTSB。将化合物 4-7 用于 MDA-MB-231 TNBC 和 MCF-10A 乳腺上皮细胞的 2D 和 3D 培养,在黑暗和光照条件下研究其对蛋白水解和细胞活力的影响。总的来说,这些数据表明,4-7 强烈抑制被染料猝灭(DQ)的胶原蛋白降解,而只有化合物 7 在光照条件下才能有效杀死细胞,这与其释放 Ru(II)基光敏剂并生成 O 的能力一致。

相似文献

1
Catch and Release Photosensitizers: Combining Dual-Action Ruthenium Complexes with Protease Inactivation for Targeting Invasive Cancers.
J Am Chem Soc. 2018 Oct 31;140(43):14367-14380. doi: 10.1021/jacs.8b08853. Epub 2018 Oct 22.
2
Photosensitive Ru(II) Complexes as Inhibitors of the Major Human Drug Metabolizing Enzyme CYP3A4.
J Am Chem Soc. 2021 Jun 23;143(24):9191-9205. doi: 10.1021/jacs.1c04155. Epub 2021 Jun 10.
3
Design of a Tris-Heteroleptic Ru(II) Complex with Red-Light Excitation and Remarkably Improved Photobiological Activity.
Inorg Chem. 2020 Aug 3;59(15):11193-11204. doi: 10.1021/acs.inorgchem.0c01860. Epub 2020 Jul 23.
4
Ruthenium-Cathepsin Inhibitor Conjugates for Green Light-Activated Photodynamic Therapy and Photochemotherapy.
Inorg Chem. 2024 Apr 29;63(17):7973-7983. doi: 10.1021/acs.inorgchem.4c01008. Epub 2024 Apr 14.
5
π-Expansive Heteroleptic Ruthenium(II) Complexes as Reverse Saturable Absorbers and Photosensitizers for Photodynamic Therapy.
Inorg Chem. 2017 Mar 20;56(6):3245-3259. doi: 10.1021/acs.inorgchem.6b02624. Epub 2017 Mar 6.
6
Dual-Action Ru(II) Complexes with Bulky π-Expansive Ligands: Phototoxicity without DNA Intercalation.
Inorg Chem. 2020 Mar 16;59(6):3919-3933. doi: 10.1021/acs.inorgchem.9b03585. Epub 2020 Feb 25.
8
Substituent effect and wavelength dependence of the photoinduced Ru-O homolysis in the [Ru(bpy)2(py-SO3)](+)-type complexes.
Dalton Trans. 2016 Feb 21;45(7):2897-905. doi: 10.1039/c5dt03694a. Epub 2016 Jan 11.
10
Visible-Light-Responsive Novel Ru(II)-Metallo-Antibiotics with Potential Antibiofilm and Antibacterial Activity.
ACS Appl Mater Interfaces. 2024 Jun 5;16(22):28118-28133. doi: 10.1021/acsami.4c02979. Epub 2024 May 23.

引用本文的文献

2
Leveraging the Photofunctions of Transition Metal Complexes for the Design of Innovative Phototherapeutics.
Small Methods. 2024 Nov;8(11):e2400563. doi: 10.1002/smtd.202400563. Epub 2024 Sep 25.
3
Ru(II) Oligothienyl Complexes with Fluorinated Ligands: Photophysical, Electrochemical, and Photobiological Properties.
Inorg Chem. 2024 May 27;63(21):9735-9752. doi: 10.1021/acs.inorgchem.3c04382. Epub 2024 May 10.
5
Ruthenium-Cathepsin Inhibitor Conjugates for Green Light-Activated Photodynamic Therapy and Photochemotherapy.
Inorg Chem. 2024 Apr 29;63(17):7973-7983. doi: 10.1021/acs.inorgchem.4c01008. Epub 2024 Apr 14.
6
Ru(II) Phenanthroline-Based Oligothienyl Complexes as Phototherapy Agents.
Inorg Chem. 2023 Dec 25;62(51):21181-21200. doi: 10.1021/acs.inorgchem.3c03216. Epub 2023 Dec 11.
7
Binding of Stimuli-Responsive Ruthenium Aqua Complexes with 9-Ethylguanine.
ACS Omega. 2023 Sep 26;8(40):37391-37401. doi: 10.1021/acsomega.3c05343. eCollection 2023 Oct 10.
8
Tricolor visible wavelength-selective photodegradable hydrogel biomaterials.
Nat Commun. 2023 Aug 29;14(1):5250. doi: 10.1038/s41467-023-40805-w.
9
Cyclic Ruthenium-Peptide Conjugates as Integrin-Targeting Phototherapeutic Prodrugs for the Treatment of Brain Tumors.
J Am Chem Soc. 2023 Jul 12;145(27):14963-14980. doi: 10.1021/jacs.3c04855. Epub 2023 Jun 28.
10
Ligand Rigidity Steers the Selectivity and Efficiency of the Photosubstitution Reaction of Strained Ruthenium Polypyridyl Complexes.
J Am Chem Soc. 2023 Jun 21;145(24):13420-13434. doi: 10.1021/jacs.3c03543. Epub 2023 Jun 9.

本文引用的文献

1
Affinity-Enhanced Luminescent Re(I)- and Ru(II)-Based Inhibitors of the Cysteine Protease Cathepsin L.
Inorg Chem. 2018 Jul 2;57(13):7881-7891. doi: 10.1021/acs.inorgchem.8b00978. Epub 2018 Jun 8.
2
The Treatment of Cancer by Phototherapy.
Trans Med Chir Soc Edinb. 1903;22:43-46.
4
Optimization of a Protease Activated Probe for Optical Surgical Navigation.
Mol Pharm. 2018 Mar 5;15(3):750-758. doi: 10.1021/acs.molpharmaceut.7b00822. Epub 2017 Dec 14.
6
Critical Overview of the Use of Ru(II) Polypyridyl Complexes as Photosensitizers in One-Photon and Two-Photon Photodynamic Therapy.
Acc Chem Res. 2017 Nov 21;50(11):2727-2736. doi: 10.1021/acs.accounts.7b00180. Epub 2017 Oct 23.
7
Structure and reactivity of [Ru(terpy)(N^N)Cl]Cl complexes: consequences for biological applications.
Dalton Trans. 2017 Aug 8;46(31):10264-10280. doi: 10.1039/c7dt01669g.
8
The Future of Cysteine Cathepsins in Disease Management.
Trends Pharmacol Sci. 2017 Oct;38(10):873-898. doi: 10.1016/j.tips.2017.06.003. Epub 2017 Jun 28.
9
Overcoming the Limits of Hypoxia in Photodynamic Therapy: A Carbonic Anhydrase IX-Targeted Approach.
J Am Chem Soc. 2017 Jun 7;139(22):7595-7602. doi: 10.1021/jacs.7b02396. Epub 2017 May 10.
10
Illuminating cytochrome P450 binding: Ru(ii)-caged inhibitors of CYP17A1.
Chem Commun (Camb). 2017 Mar 28;53(26):3673-3676. doi: 10.1039/c7cc01459g.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验